Περίληψη
Η παρούσα διδακτορική διατριβή επικεντρώνεται στην ανάπτυξη μικροαντιδραστήρων για την ενίσχυση δεσοξυριβονουκλεϊνικών οξέων (DNA) με βάση το υπόστρωμα τυπωμένου κυκλώματος (Printed Circuit board,PCB) με χαμηλό κόστος και χαμηλή κατανάλωση ενέργειας, επιτρέποντας τη χρήση τους ακόμη και σε περιοχές με χαμηλούς πόρους, κατάλληλες για ολοκλήρωση σε πλατφόρμες μικροεργαστηρίων σε ψηφίδα (Lab-on-a-Chip, LoC) με εφαρμογή στην ασφάλεια τροφίμων, στα ιατρικά διαγνωστικά και στην περιβαλλοντική παρακολούθηση για την ανίχνευση παθογόνων.Επιτεύχθηκε ταυτόχρονα μεγάλος βαθμός ολοκλήρωσης και χαμηλό κόστος κατασκευής των μικροδιατάξεων αυτών με την επιλογή του PCB ως το κυρίως υπόστρωμα και την ανάπτυξη διαδικασιών κατασκευής συμβατών με την τεχνολογία PCB. Εκτός από την ολοκλήρωση των μικρορευστωνικών δικτύων με ηλεκτρονικά στοιχεία όπως οι αισθητήρες, το PCB επιτρέπει επίσης την ολοκλήρωση μικρoθερμαντικών στοιχείων χαλκού που παρέχουν τις θερμικές ζώνες που είναι απαραίτητες για την ενίσχυση ...
Η παρούσα διδακτορική διατριβή επικεντρώνεται στην ανάπτυξη μικροαντιδραστήρων για την ενίσχυση δεσοξυριβονουκλεϊνικών οξέων (DNA) με βάση το υπόστρωμα τυπωμένου κυκλώματος (Printed Circuit board,PCB) με χαμηλό κόστος και χαμηλή κατανάλωση ενέργειας, επιτρέποντας τη χρήση τους ακόμη και σε περιοχές με χαμηλούς πόρους, κατάλληλες για ολοκλήρωση σε πλατφόρμες μικροεργαστηρίων σε ψηφίδα (Lab-on-a-Chip, LoC) με εφαρμογή στην ασφάλεια τροφίμων, στα ιατρικά διαγνωστικά και στην περιβαλλοντική παρακολούθηση για την ανίχνευση παθογόνων.Επιτεύχθηκε ταυτόχρονα μεγάλος βαθμός ολοκλήρωσης και χαμηλό κόστος κατασκευής των μικροδιατάξεων αυτών με την επιλογή του PCB ως το κυρίως υπόστρωμα και την ανάπτυξη διαδικασιών κατασκευής συμβατών με την τεχνολογία PCB. Εκτός από την ολοκλήρωση των μικρορευστωνικών δικτύων με ηλεκτρονικά στοιχεία όπως οι αισθητήρες, το PCB επιτρέπει επίσης την ολοκλήρωση μικρoθερμαντικών στοιχείων χαλκού που παρέχουν τις θερμικές ζώνες που είναι απαραίτητες για την ενίσχυση του DNA. Ως εκ τούτου, η χαμηλού κόστους μαζική παραγωγή μικροδιατάξεων ενίσχυσης DNA είναι εφικτή με την χρήση των προτεινόμενων εμπορικά διαθέσιμων υλικών και μεθόδων συμβατών με την τεχνολογία PCB για την κατασκευή των μικροδιατάξεων αυτών στην καλά εδραιωμένη βιομηχανία PCB, αντιμετωπίζοντας έτσι ένα από τα εμπόδια σχετικά με τις μικρορευστωνικές διατάξεις που είναι η εμπορική αξιοποίησή τους.Στην παρούσα διατριβή, κατασκευάστηκαν μικροδιατάξεις ενίσχυσης DNA στατικού θαλάμου και συνεχούς ροής και ελέχθησαν χρησιμοποιώντας πολυάριθμες μεθόδους ενίσχυσης (ισοθερμικές και μη ισοθερμικές) όπως η αλυσιδωτή αντίδραση πολυμεράσης (Polymerase Chain Reaction, PCR), Recombinase Polymerase Amplification (RPA), Helicase Dependent Amplification (HDA) και Loop-mediated Amplification (LAMP). Πρωτόκολλα ενίσχυσης DNA πολύ ταχύτερα σε σχέση με αυτά που διενεργούνται σε συμβατικούς θερμοκυκλοποιητές (μέχρι 20 φορές) διεξήχθησαν εντός των μικροδιατάξεων ενίσχυσης DNA, με συνολική διάρκεια από 2 λεπτά - μία από τις ταχύτερες που αναφέρθηκαν ποτέ - έως 30 λεπτά. Ο σχεδιασμός (βάση αριθμητικών υπολογισμών) των μικροαντιδραστήρων DNA εξασφαλίζει επίσης χαμηλή κατανάλωση ενέργειας (324 J έως 4320 J) η οποία μπορεί να μεταφραστεί στην ανεξάρτητη διεξαγωγή από 65 μέχρι 1000 αντιδράσεων (αναλόγως της μεθόδου ενίσχυσης DNA) με χρήση συνήθους μπαταρίας ισχύος 10.000 mAh (9V).Τέτοιοι μικροαντιδραστήρες ενίσχυσης DNA ολοκληρώθηκαν για πρώτη φορά με ακουστικούς βιοαισθητήρες (Surface Acoustic Wave, SAW). Στην εργασία, παρουσιάζεται μια πλατφόρμα μικροεργαστηρίου σε ψηφίδα LoC βασισμένη στην ακουστική ανίχνευση SAW, εντός της οποίας διεξάγεται η δέσμευση και λύση κυττάρων, και η ενίσχυση του βακτηριακού DNA σε ένα και μόνο θάλαμο για την ανίχνευση ζώντων κυττάρων Σαλμονέλας (που προέρχονται από τεχνητό εμβολιασμό στο γάλα) μέσα σε λιγότερο από 6 ώρες.Παράλληλα, επιτεύχθηκε περαιτέρω βελτίωση της πλατφόρμας LoC με διερεύνηση μεθόδων παθητικοποίησης των τοιχωμάτων μικροκαναλιών για την πρόληψη προσρόφησης βιομορίων στην επιφάνεια των μικροδιατάξεων για τη βελτίωση της ενίσχυσης DNA. Διάλυμα 1% αλβουμίνης Βόιου ορού (Bovine Serum Albumin, BSA) παρατηρήθηκε ότι παθητικοποιεί με βέλτιστο τρόπο τα τοιχώματα και συνεπώς αναστέλλει την προσρόφηση βιομορίων. Παρομοίως, διερευνήθηκε η επιφανειακή ενεργοποίηση των ακουστικών αισθητήρων (Quartz Crystal Microbalance with Dissipation, QCM-D) για επιλεκτική δέσμευση DNA σε πολύπλοκα δείγματα, ανοίγοντας το δρόμο για να χρησιμοποιηθεί η αναπτυγμένη πλατφόρμα με πολύπλοκες μήτρες δειγμάτων. Η χρήση παρεμποδιστικού ρυθμιστικού διαλύματος πριν την εισαγωγή του δείγματος προς ανάλυση στον βιοαισθητήρα βελτιώνει τη διαχωριστική ικανότητα μεταξύ μολυσμένων και μη δειγμάτων όταν χρησιμοποιείται η ανίχνευση μέσω ειδικής πρόσδεσης Αβιδίνης-Βιοτίνης.
περισσότερα
Περίληψη σε άλλη γλώσσα
This PhD thesis focuses on the development of low cost and low energy consumption DNA amplification Printed Circuit Board (PCB)-based microdevices, enabling their use even in low resource settings, suitable for integration in Lab-on-a-Chip (LoC) platforms addressing pathogen detection employed in food safety, medical diagnostics, and environmental monitoring.Both high integrability and low fabrication cost were achieved by selecting PCB as the main substrate and developing fabrication processes compatible with PCB manufacturing. Besides the integration of microfluidics with electronic components such as sensors, PCB allows also the integration of copper microheaters providing the thermal zones necessary for DNA amplification. Therefore, low-cost, mass production amenable DNA amplification microdevices are feasible with the implementation of commercially available, PCB compatible materials and processes proposed for the fabrication of the microdevices within the established PCB industry ...
This PhD thesis focuses on the development of low cost and low energy consumption DNA amplification Printed Circuit Board (PCB)-based microdevices, enabling their use even in low resource settings, suitable for integration in Lab-on-a-Chip (LoC) platforms addressing pathogen detection employed in food safety, medical diagnostics, and environmental monitoring.Both high integrability and low fabrication cost were achieved by selecting PCB as the main substrate and developing fabrication processes compatible with PCB manufacturing. Besides the integration of microfluidics with electronic components such as sensors, PCB allows also the integration of copper microheaters providing the thermal zones necessary for DNA amplification. Therefore, low-cost, mass production amenable DNA amplification microdevices are feasible with the implementation of commercially available, PCB compatible materials and processes proposed for the fabrication of the microdevices within the established PCB industry, thus addressing one of the microfluidics bottlenecks which is their commercialization.In this thesis, both static and continuous flow DNA amplification microdevices were fabricated and validated employing numerous amplification (isothermal and non-isothermal) methods such as Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Helicase Dependent Amplification (HDA) and Loop-mediated Amplification (LAMP). Amplification protocols much faster than in conventional thermocyclers (up to more than 20 times) were demonstrated within the developed DNA amplification microdevices, from 2 min –one of the fastest ever reported- to 30 min. The design of the DNA microdevices (based on numerical calculations) assures also low energy consumption (324 J to 4320 J) which can be translated to the independent operation/performance of 65 to 1000 reactions (depending on the DNA amplification method) with a regular power bank of 10.000 mAh (9V).Such DNA amplification microdevices were for the first time integrated with Surface Acoustic Wave (SAW) biosensors; a LoC platform based on SAW acoustic detection is demonstrated in this work, performing cell capturing, lysis and DNA amplification on a single chip for the detection of viable Salmonella cells (stemming from artificially spiked milk) within less than 6 h.In parallel, further improvement of the LoC platform was achieved by investigating methods for wall passivation to prevent biomolecule adsorption on the surface of the microfluidic devices and promote DNA amplification. Bovine Serum Albumin (BSA) 1% proved to better passivate wall surfaces by inhibiting biomolecule adsorption. Similarly, surface functionalization of acoustic sensors (Quartz Crystal Microbalance with Dissipation, QCM-D) for selective DNA binding in complex samples was investigated, paving the way to employ the developed platform with complex matrices. The use of a blocking buffer prior passing the sample improves the discrimination potential between contaminated and control samples when Avidin-Biotin conjugate detection is used.
περισσότερα