Περίληψη
Το οξείδιο του γραφενίου (GO) προσελκύει μεγάλο επιστημονικό ενδιαφέρον καθώς, μέσω της αναγωγής του, είναι δυνατή η μεγάλης κλίμακας παραγωγή γραφενίου αλλά και λόγω των μοναδικών ηλεκτρονικών ιδιοτήτων του, οι οποίες το καθιστούν κατάλληλο για ενσωμάτωση σε ποικίλες εφαρμογές, όπως φωτοβολταïκές διατάξεις και προηγμένα φωτοκαταλυτικά υλικά. Το GO αποτελείται από φύλλα γραφενίου με επιφανειακές ομάδες οξυγόνου τυχαία κατανεμημένες σε κάθε επίπεδο, οι οποίες προκαλούν την παρουσία μικτού υβριδισμού sp2/sp3 και ιδιαζόντως ετερογενή ηλεκτρονική δομή που περιλαμβάνει αγώγιμες και μονωτικές περιοχές sp2 και sp3, αντίστοιχα. Οι φωτονικοί κρύσταλλοι διοξειδίου του τιτανίου ή τιτανίας (TiO2) υπό την μορφή αντιστρόφων οπαλίων αποτελούν μια προηγμένη δομική τροποποίηση, η οποία μπορεί να ενισχύσει τη φωτοκαταλυτική δράση της τιτανίας, προσφέροντας μια μακρο-μεσοπορώδη και περιοδική δομή, μέσω της οποίας μπορεί να επιτευχθεί αφενός ταχύτερη διάχυση και διάσπαση των μορίων του ρύπου, αφετέρου ενί ...
Το οξείδιο του γραφενίου (GO) προσελκύει μεγάλο επιστημονικό ενδιαφέρον καθώς, μέσω της αναγωγής του, είναι δυνατή η μεγάλης κλίμακας παραγωγή γραφενίου αλλά και λόγω των μοναδικών ηλεκτρονικών ιδιοτήτων του, οι οποίες το καθιστούν κατάλληλο για ενσωμάτωση σε ποικίλες εφαρμογές, όπως φωτοβολταïκές διατάξεις και προηγμένα φωτοκαταλυτικά υλικά. Το GO αποτελείται από φύλλα γραφενίου με επιφανειακές ομάδες οξυγόνου τυχαία κατανεμημένες σε κάθε επίπεδο, οι οποίες προκαλούν την παρουσία μικτού υβριδισμού sp2/sp3 και ιδιαζόντως ετερογενή ηλεκτρονική δομή που περιλαμβάνει αγώγιμες και μονωτικές περιοχές sp2 και sp3, αντίστοιχα. Οι φωτονικοί κρύσταλλοι διοξειδίου του τιτανίου ή τιτανίας (TiO2) υπό την μορφή αντιστρόφων οπαλίων αποτελούν μια προηγμένη δομική τροποποίηση, η οποία μπορεί να ενισχύσει τη φωτοκαταλυτική δράση της τιτανίας, προσφέροντας μια μακρο-μεσοπορώδη και περιοδική δομή, μέσω της οποίας μπορεί να επιτευχθεί αφενός ταχύτερη διάχυση και διάσπαση των μορίων του ρύπου, αφετέρου ενίσχυση της φωτοεπαγόμενης διαδικασίας μέσω των αργών φωτονίων. Αντικείμενο της παρούσας διατριβής ήταν η ανάπτυξη καινοτόμων φωτονικών κρυστάλλων οξειδίου του γραφενίου-διοξειδίου του τιτανίου (GO-TiO2), οι οποίοι, κατά τη διάρκεια των φωτοκαταλυτικών διεργασιών, εκτός από τα πλεονεκτήματα των αντιστρόφων οπαλίων, παρουσιάζουν μεγαλύτερη προσρόφηση ρύπου και βελτιωμένο διαχωρισμό φορτίου. Αρχικά, μελετήθηκαν οι ηλεκτρονικές και μαγνητικές ιδιότητες του οξειδίου του γραφενίου πριν και μετά την χημική αναγωγή του με βοροϋδρίδιο του νατρίου. Μετρήσεις φασματοσκοπίας Raman και υπερύθρου, περίθλασης ακτινών-Χ και ηλεκτρονικής μικροσκοπίας σάρωσης έδειξαν δραστική μείωση των λειτουργικών ομάδων οξυγόνου στο πλέγμα του GO και αύξηση των γραφιτικών περιοχών sp2 μετά την αναγωγή. Μετρήσεις στατικής μαγνήτισης και φασματοσκοπίας EPR φανέρωσαν την ύπαρξη ισχυρού παραμαγνητισμού καθώς και ασθενών αντισιδηρομαγνητικών αλληλεπιδράσεων σε χαμηλές θερμοκρασίες, λόγω εντοπισμένων μαγνητικών ροπών υψηλού spin (S=2), οι οποίες αποδόθηκαν σε χωρικά απομονωμένα μαγνητικά σύμπλοκα προερχόμενα από μικρές ομάδες ισχυρά συζευγμένων spin με αλληλεπίδραση ανταλλαγής, καθώς και σε ασύζευκτα spin σε πλεγματικές ατέλειες. Η αναγωγή οδήγησε σε δραστική μείωση του παραμαγνητισμού σε συνδυασμό με την εμφάνιση διαμαγνητισμού και ασθενούς παραμαγνητισμού Pauli λόγω της ελάττωσης της συγκέντρωσης ατελειών και της δημιουργίας νέων γραφιτικών περιοχών. Στην περίπτωση του ανηγμένου δείγματος, τα αποτέλεσμα EPR υπέδειξαν, επίσης, την υπέρθεση δύο διακριτών συστημάτων spin, από τα οποία το ένα αποδόθηκε σε παραμαγνητικές ατέλειες στις περιοχές sp2 ισχυρά συζευγμένες με τα ηλεκτρόνια αγωγιμότητας και το άλλο σε ασύζευκτα spin εντοπισμένα σε πλεγματικά κενά ή στα άκρα και ασθενώς συζευγμένα με τα ηλεκτρόνια αγωγιμότητας. Στη συνέχεια, παρασκευάστηκαν αντίστροφα οπάλια TiO2 μεταβλητού φωτονικού χάσματος με τη μέθοδο συν-απόθεσης των πολυμερικών σφαιρών με το κατάλληλο πρόδρομο διάλυμα τιτανίας, τα οποία τροποποιήθηκαν επιφανειακά με νανοκολλοειδές διάλυμα GO. Τα μορφολογικά και δομικά χαρακτηριστικά των δειγμάτων μελετήθηκαν με τη βοήθεια ηλεκτρονικής μικροσκοπίας σάρωσης και διέλευσης, φασματοσκοπίας Raman, μετρήσεων κατοπτρικής και διάχυτης ανακλαστικότητας υπεριώδους-ορατού και πoροσιμετρίας N2. Διαπιστώθηκε ότι η συγκέντρωση νανοφύλλων GO στα φωτονικά υμένια μεταβάλλεται σύμφωνα με το μέγεθος των μακροπόρων, με αμελητέα, όμως, επίδραση στην περιοδικότητα και στις φωτονικές ιδιότητες. Η φωτοκαταλυτική απόδοση των δειγμάτων αξιολογήθηκε στην αποικοδόμηση του ρύπου κυανού του μεθυλενίου (methylene blue - MB) στο νερό υπό την επίδραση υπεριώδους-ορατής (UV-vis) και ορατής (Vis) ακτινοβολίας. Στην πρώτη περίπτωση η εναπόθεση nanoGO οδήγησε σε ενίσχυση της φωτοκαταλυτικής διεργασίας, προκαλώντας μεγαλύτερη προσρόφηση της χρωστικής ουσίας και ισχυρότερο διαχωρισμό των φωτοεπαγόμενων φορέων του TiO2. H αυξημένη ικανότητα των τροποποιημέων υμενίων στην προσρόφηση του MB επιβεβαιώθηκε με τη βοήθεια φασματοσκοπίας Raman και αποδόθηκε στις λειτουργικές ομάδες οξυγόνου που διαθέτει το GO, οι οποίες αλληλεπιδρούσαν ηλεκτροστατικά με τη χρωστική ουσία. Ο ισχυρότερος διαχωρισμός φορτίου ήταν αποτέλεσμα μεταφοράς ηλεκτρονίων από την τιτανία στο οξείδιο του γραφενίου και επιβεβαιώθηκε με φασματοσκοπία EPR και φωταύγειας. Η εισαγωγή των νανοφύλλων βελτίωσε, όμως, και τη φωτοκατάλυση υπό την επίδραση ορατού φωτός λόγω της μεγαλύτερης προσρόφησης των μορίων ΜΒ, η οποία ενίσχυσε τον μηχανισμό της αυτό-αποικοδόμησης. Τόσο υπό την επίδραση υπεριώδους-ορατής, όσο και υπό την επίδραση ορατής ακτινοβολίας σημαντική ενίσχυση παρατηρήθηκε όταν το άκρο του φωτονικού χάσματος που αντιστοιχούσε στα ερυθρά αργά φωτόνια συνέπεσε με την περιοχή ηλεκτρονικής απορρόφησης της χρωστικής ένωσης. Η παρουσία των αργών φωτονίων επιβεβαιώθηκε από την επιλεκτική ενίσχυση του σήματος Raman του ΜΒ μετά την προσρόφησής του στους φωτονικούς κρυστάλλους. Τέλος, μελετήθηκε η δυνατότητα ενίσχυσης της διεπιφανειακής μεταφοράς ηλεκτρονίων μεταξύ τιτανίας και GO μέσω της θερμικής αναγωγής των τροποποιημένων υμενίων σε διαφορετικές θερμοκρασίες (200 και 500 οC). Παρατηρήθηκε ότι η αναγωγή των αντιστρόφων οπαλίων GO-TiO2 δεν επηρέασε την περιοδικότητα της δομής και τις φωτονικές τους ιδιότητες. Αντίθετα, μείωσε τον αριθμό των νανοφύλλων στην επιφάνειά τους, βελτιώνοντας, παράλληλα και τον γραφιτικό χαρακτήρα, σύμφωνα με τα αποτελέσματα στοιχειακής ανάλυσης EDX, φασματοσκοπίας Raman και XPS. Πειράματα φωτοαποικοδόμησης του ρύπου ΜΒ στην υγρή φάση υπό την επίδραση υπεριώδους-ορατού και ορατού φωτός έδειξαν ότι η αναγωγή στους 200οC βελτίωσε τη φωτοκαταλυτική απόδοση των τροποποιημένων φωτονικών κρυστάλλων, παρόλο που η προσρόφηση της χρωστικής πάνω σε αυτά μειώθηκε εξαιτίας της αφαίρεσης των λειτουργικών ομάδων οξυγόνου και της μερικής απομάκρυνσης των νανοφύλλων. Η βελτίωση αυτή αποδόθηκε στον καλύτερο διαχωρισμό φορτίου σε συνδυασμό με την ύπαρξη φωτονικών φαινομένων. Η ενίσχυση του διαχωρισμού φορτίου κατά την αναγωγή στους 200 οC επιβεβαιώθηκε απευθείας με φασματοσκοπία φωταύγειας καθώς και με αντίστοιχα πειράματα φωτοκατάλυσης για την αποικοδόμηση σαλικυλικού οξέος με ακτινοβολία UV-vis, όπου η φωτονική ενίσχυση απουσίαζε.
περισσότερα
Περίληψη σε άλλη γλώσσα
Graphene oxide (GO) attracts particular scientific interest because its reduction enables large-scale production of graphene but also because of its unique electronic properties, which make it suitable for integration into a variety of applications, such as photovoltaic devices and advanced photocatalytic materials. GO is composed of graphene sheets with randomly distributed surface oxygen groups, which cause the presence of mixed sp2/sp3 hybridization and a highly heterogeneous electronic structure comprising conductive and insulating regions sp2 and sp3, respectively. Photonic crystal-assisted TiO2 photocatalysis has been attracting significant attention as an advanced photon management approach that combines light harvesting with the macro/mesoporous structured materials properties permitting enhanced mass transport and high adsorption. In this work, surface modification of TiO2 photonic crystals by graphene oxide (GO) nanocolloids was explored as an integrated approach to further i ...
Graphene oxide (GO) attracts particular scientific interest because its reduction enables large-scale production of graphene but also because of its unique electronic properties, which make it suitable for integration into a variety of applications, such as photovoltaic devices and advanced photocatalytic materials. GO is composed of graphene sheets with randomly distributed surface oxygen groups, which cause the presence of mixed sp2/sp3 hybridization and a highly heterogeneous electronic structure comprising conductive and insulating regions sp2 and sp3, respectively. Photonic crystal-assisted TiO2 photocatalysis has been attracting significant attention as an advanced photon management approach that combines light harvesting with the macro/mesoporous structured materials properties permitting enhanced mass transport and high adsorption. In this work, surface modification of TiO2 photonic crystals by graphene oxide (GO) nanocolloids was explored as an integrated approach to further improve their performance by combing the advantages of better light harvesting, surface area and transport with the enhanced adsorption capability and charge separation that GO can induce.In the beginning, the electronic and magnetic properties of graphene oxide before and after its chemical reduction by sodium borohydride (NaBH4) were investigated. Raman spectroscopy, IR spectroscopy and XRD measurements revealed a drastic removal of the functional oxygen groups and a significant growth of the sp2 graphitic domains after the reduction. Static magnetization and EPR spectroscopy indicated the presence of strong paramagnetism in GO along with weak antiferromagnetic interactions at low temperatures, mainly due to the existence of high spin (S=2) magnetic moments, attributed to spatially “isolated” magnetic clusters, stemming from exchange coupled localized spins. The chemical reduction resulted in the decrease of the paramagnetism along with the increase of the diamagnetism and the appearance of a weak Pauli contribution, reflecting the removal of the defects spins and the concomitant recovery of the sp2 areas. In the case of reduced graphene oxide (rGO), EPR measurements, also, revealed the occurrence of two distinct spin systems, a major one possibly originating from of localized defect states strongly coupled with itinerant spins within the sp2 domains and a minor one due to edge/vacancy defects spins weakly coupled with the conduction electrons, indicative of structural inhomogeneity of rGO.Subsequently, photonic band gap engineered TiO2 inverse opal films were fabricated by the convective evaporation-induced co-assembly of polystyrene colloidal spheres with the titania precursor, leading to well-ordered nanocrystalline photonic films with controlled structural and optical properties, which were surface functionalized by GO nanocolloids (nanoGO). The loading of GO nanosheets was determined by the films’ macropore size, with minimal effects on their long range periodicity and photonic properties according to scanning and transmission electron microscopy, specular and diffuse UV-Vis reflectance, Raman spectroscopy and N2 porosimetry measurements. The photocatalytic performance of the films was evaluated on the aqueous phase degradation of the pollutant methylene blue (MB). Under UV-vis irradiation, the nanoGO deposition led to a marked improvement of the photocatalytic efficiency by enhancing the MB adsorption on the films and reducing the electron-hole recombination of TiO2. The increase of the dye adsorption was corroborated by means of Raman spectroscopy and was ascribed to the electrostatic interactions between the oxygen groups of GO and the pollutant. The stronger charge separation was a result of electron transport from titania to GO and was verified using EPR and photoluminescence spectroscopy. The functionalization of the films, also, led to a significant improvement of the photocatalytic activity under visible light, as the higher MB adsorption enhanced the self-sensitized dye degradation mechanism on titania’s surface. Under both UV-Vis and Vis light, slow photon amplification was identified, when the low energy edge of the inverse opal stop band (in water) approached the MB electronic absorption. Furthermore, the presence of the slow photons was confirmed by the selective response of the Raman signal of MB on the photonic films. Finally, thermal reduction of GO-titania photonic films at different temperatures (200 and 500 oC) was explored as a means to further enhance the interfacial electron transfer and, thus, improve their photocatalytic performance. It was evidenced that post-reduction did not affect the highly ordered macroporous structure of the photonic films, leaving the photonic stop bands positions intact. Raman, EDX and XPS spectroscopies disclosed, however, that upon thermal trreatment, not only were the sp2 domains partially recovered, but also the amount of nanoGO on the modified films was moderated. Although the losses of oxygen functional groups and the GO nanosheets led to a decrease in the dye adsorption, aqueous phase photodegradation of the MB dye under UV-vis and visible light showed that thermal reduction of the GO-TiO2 photonic films at 200oC, in synergy with slow photon amplification, improved the MB photocatalytic degradation rate, indicative of enhanced charge separation due to the lower work function and higher conductivity of the rGO nanosheets. The intensification of interfacial charge transfer was further supported by both PL spectroscopy and photocatalytic experiments under UV-vis light using salicylic acid as emerging water pollutant. In that case, the SA photocatalytic degradation was drastically increased on the post-treated rGO-TiO2 inverse opals despite the absence of photonic effects.
περισσότερα