Μηχανική μάθηση για την ανάλυση μεγάλων βιολογικών δεδομένων

Περίληψη

H παρούσα διδακτορική διατριβή εντάσσεται στα πλαίσια των ερευνητικών περιοχών της Βιοπληροφορικής και της Ανάλυσης Μεγάλων Δεδομένων με Μηχανική Μάθηση. Πρωταρχικό στόχο αποτελεί η ανάπτυξη υπολογιστικών μοντέλων ικανών να εξάγουν χρήσιμες πληροφορίες από την επεξεργασία βιολογικών δεδομένων, που θα οδηγήσουν στη διεύρυνση της γνώσης σε ανοιχτά βιολογικά ζητήματα. Η έρευνα εστιάζει σε δύο βιολογικούς στόχους, στην αναγνώριση μικρών ανοικτών παραθύρων ανάγνωσης (sORFs) που κωδικοποιούν πρωτεΐνες και στη ρύθμιση της έκφρασης κωδικών και μη κωδικών γονιδίων. Τα τελευταία χρόνια έχει αναγνωριστεί μια αυξανόμενη ποικιλία πεπτιδίων μικρότερων των 100 κωδικονίων σε διάφορους οργανισμούς, από βακτήρια έως ανθρώπους, τα οποία δρουν ως ρυθμιστές πολλών κρίσιμων διαδικασιών όπως ο μεταβολισμός, η ανάπτυξη, και ο κυτταρικός θάνατος. Επιπρόσθετα με τις αλληλουχίες που κωδικοποιούν μεγάλες πρωτεΐνες, υπάρχουν πολλά μικρά ανοιχτά πλαίσια ανάγνωσης που επεξεργάζονται από τον μεταφραστικό μηχανισμό τ ...
περισσότερα

Περίληψη σε άλλη γλώσσα

This doctoral dissertation is part of the research areas of Bioinformatics and Big Data Analysis with Machine Learning. The primary goal is to develop computer models capable of extracting useful information from the processing of biological data, which w