Ερμηνεύσιμα μοντέλα βαθιάς μάθησης για την ανάλυση οπτικών δεδομένων
Περίληψη
Στο πλαίσιο της διατριβής μελετήθηκαν διάφορες εφαρμογές της Βαθιάς Μηχανικής Μάθησης για την αναγνώριση οπτικών δεδομένων. Αρχικά μελετήθηκαν, σχεδιάστηκαν και υλοποιήθηκαν διάφορες μεθοδολογίες σε τομείς όπως η ανάλυση συναισθήματος και η ανάλυση εικόνας. Ιδιαίτερη έμφαση δόθηκε στον τομέα της ιατρικής εικόνας με εφαρμογές σε νευροεκφυλιστικές νόσους, όπου κατασκευάσθηκε ένα σύνολο δεδομένων σχετικών με τη Νόσο του Parkinson. Έπειτα, σχεδιάσθηκαν και υλοποιήθηκαν διάφορες αρχιτεκτονικές για την ανάλυση των εικόνων αυτών, ώστε να εκπαιδευθεί ένα σύστημα ικανό να παράγει διαγνώσεις. Η απόδοση του τελευταίου όμως δεν αρκεί από μόνη της ώστε να εξασφαλιστεί η χρησιμότητά του, καθόσον το σύστημα να πρέπει να παρέχει μια μορφή ερμηνευσιμότητας. Κατά συνέπεια, το σύστημα επεκτάθηκε ώστε να του δοθεί η απαραίτητη διαφάνεια για το σκοπό αυτό. Στη συνέχεια, μελετήθηκε εκτενέστερα το θέμα της Ερμηνευσιμότητας των Βαθιών Νευρωνικών Δικτύων. Πιο συγκεκριμένα, ορίστηκαν διάφορες μετρικές μέσω των ...
περισσότερα
Περίληψη σε άλλη γλώσσα
The first part of this dissertation focuses on developing Deep Neural Networks for applications in several domains, such as Facial Expression Recognition, Medical Image Analysis and Autonomous Driving. One of the domains where we focused on was that of Computer-Aided Diagnosis. We tried to build Neural Networks with both Convolutional an Recurrent components to properly capture the relationships in the volumetric input data. As an extension to the previous model, we modified its training procedure so that it can adapt to new data, without forgetting its previous training. The technique involves clustering the highest-level features extracted from the CNN. Each cluster is associated to a class; a sample is then classified depending on what cluster is closest to that sample's features. Finally, by giving an expert interpretation to each cluster, the model's predictions can be somewhat explained, giving the model a level of Interpretability. Through the various applications we examined, w ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (24.22 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.