Περίληψη
Ένα από τα πιο καίρια ερωτήματα για τους χρήστες του διαδικτύου, είναι πώς θα καταφέρουν να διαχειριστούν την τεράστια ποσότητα διαθέσιμης πληροφορίας, ώστε να καταλήξουν σε επιλογή προϊόντων που ανταποκρίνονται όσο το δυνατό καλύτερα στις προτιμήσεις και ανάγκες τους. Αντίστοιχα, οι εταιρείες που παρέχουν προϊόντα ή υπηρεσίες μέσω του διαδικτύου, προσπαθούν συστηματικά να εντοπίσουν μεθόδους ώστε να αποκωδικοποιήσουν με ακρίβεια τα προφίλ προτίμησης των χρηστών, με στόχο να καταφέρουν να προσαρμόσουν κατάλληλα τα προϊόντα τους και να αυξήσουν τις πωλήσεις τους.Για τους παραπάνω λόγους, η επιστημονική και ερευνητική κοινότητα που δραστηριοποιείται στο τομέα της ανάλυσης δεδομένων και το μάρκετινγκ έχει επικεντρώσει την προσπάθεια της, στην δημιουργία μεθοδολογιών που θα απαντήσουν όσο το δυνατόν πιο αποτελεσματικά τα παραπάνω ερωτήματα. Οι περισσότερες από αυτές τις μεθοδολογίες καταλήγουν στην ανάπτυξη προσαρμοστικών συστημάτων που αντλούν δεδομένα από το διαδίκτυο και εξάγουν προτάσε ...
Ένα από τα πιο καίρια ερωτήματα για τους χρήστες του διαδικτύου, είναι πώς θα καταφέρουν να διαχειριστούν την τεράστια ποσότητα διαθέσιμης πληροφορίας, ώστε να καταλήξουν σε επιλογή προϊόντων που ανταποκρίνονται όσο το δυνατό καλύτερα στις προτιμήσεις και ανάγκες τους. Αντίστοιχα, οι εταιρείες που παρέχουν προϊόντα ή υπηρεσίες μέσω του διαδικτύου, προσπαθούν συστηματικά να εντοπίσουν μεθόδους ώστε να αποκωδικοποιήσουν με ακρίβεια τα προφίλ προτίμησης των χρηστών, με στόχο να καταφέρουν να προσαρμόσουν κατάλληλα τα προϊόντα τους και να αυξήσουν τις πωλήσεις τους.Για τους παραπάνω λόγους, η επιστημονική και ερευνητική κοινότητα που δραστηριοποιείται στο τομέα της ανάλυσης δεδομένων και το μάρκετινγκ έχει επικεντρώσει την προσπάθεια της, στην δημιουργία μεθοδολογιών που θα απαντήσουν όσο το δυνατόν πιο αποτελεσματικά τα παραπάνω ερωτήματα. Οι περισσότερες από αυτές τις μεθοδολογίες καταλήγουν στην ανάπτυξη προσαρμοστικών συστημάτων που αντλούν δεδομένα από το διαδίκτυο και εξάγουν προτάσεις για τους χρήστες. Η πιο γνωστή κατηγορία τέτοιου είδους συστημάτων είναι τα συστήματα συστάσεων (Recommender Systems). Στην παρούσα ερευνητική εργασία παρουσιάζεται η μεθοδολογία και τα αποτελέσματα πιλοτικής λειτουργίας ενός νέου υβριδικού συστήματος συστάσεων που βασίζεται στη χρήση μεθόδων ανάλυσης συναισθήματος, πολυκριτήριας ανάλυσης καθώς και μεθόδων φιλτραρίσματος. Η μεθοδολογία καταλήγει σε τέσσερα διαφορετικά είδη σύστασης, με άκρως ενδιαφέροντα αποτελέσματα.Μέσω του μεθοδολογικού πλαισίου γίνεται εφικτός ο προσδιορισμός των προτιμησιακών προφίλ των χρηστών του συστήματος, τα οποία εν συνεχεία αντιστοιχίζονται σε «προφίλ πελατών» που επιλέγουν συγκεκριμένα προϊόντα/υπηρεσίες που τους «ταιριάζουν».Έτσι, καταλήγουμε σε προσωποποιημένες συστάσεις προϊόντων στον χρήστη του συστήματος, που είναι ανάλογες των προτιμήσεων του. Επιπλέον δίνεται στο χρήστη η δυνατότητα να φιλτράρει τις διαθέσιμες εναλλακτικές με σχετική επιλογή από ένα σύνολο κατ’ αποκοπή κριτηρίων. Η χρήση του κατωφλιού ελάχιστης ικανοποίησης, που προσδιορίζεται από τα αποτελέσματα της ανάλυσης συναισθήματος στα σχόλια των πελατών, εγγυάται την ποιότητα των συστάσεων.Τα δεδομένα του συστήματος είναι πραγματικές απόψεις και βαθμολογίες χρηστών για καταλύματα, καθώς και χαρακτηριστικά καταλυμάτων που αντλήθηκαν από γνωστή διαδικτυακή πλατφόρμα κρατήσεων. H ανάπτυξη του συστήματος βασίστηκε στην μεθοδολογία CRISP-DM(Shearer, 2000a). Η αξιολόγηση του συστήματος συστάσεων γίνεται με μέτρηση της ακρίβειας προβλέψεων αξιολογήσεων σε πείραμα με πραγματικούς χρήστες.Για τη μελέτη περίπτωσης χρησιμοποιήθηκαν δεδομένα για τα τουριστικά καταλύματα του Νομού Χανίων. Τα πιο σημαντικά χαρακτηριστικά της συγκεκριμένης ερευνητικής προσπάθειας είναι: α. H χρήση μεγάλου όγκου πραγματικών δεδομένων σε αντίθεση με τις περισσότερες από τις υπάρχουσες έρευνες που χρησιμοποιούν έτοιμα τεστ σετ δεδομένων. β. Η χρησιμοποίηση όλης της διαθέσιμης αντλημένης πληροφορίας προκειμένου να καταλήξουμε σε σύσταση. Πιο συγκεκριμένα στην παρούσα μεθοδολογία χρησιμοποιούνται δεδομένα βαθμολογιών προϊόντων για την ανάλυση ικανοποίησης πελατών, δεδομένα απόψεων για τη συναισθηματική ανάλυση, στατικά δεδομένα των προϊόντων σαν κατ’ αποκοπή κριτήρια σε αντίθεση με τις περισσότερες μελέτες όπου χρησιμοποιούνται είτε βαθμολογίες, είτε ανάλυση σχολίων για την τελική σύσταση.γ. Η χρήση των αποτελεσμάτων της ανάλυσης συναισθήματος ως κατώφλια ποιότητας σύστασης. δ. Η επιτυχής εφαρμογή παραλλαγής της πρόσφατα παρουσιασθείσας μεθόδου WAP, για τη δημιουργία προτιμησιακού προφίλ χρήστη.ε. Η απαίτηση για εισαγωγή ελάχιστων δεδομένων από το χρήστη.στ. Ο ελάχιστος χρόνος που απαιτείται για την παραγωγή της σύστασης κατά τη λειτουργία του συστήματος.η. Η αποφυγή άντλησης προσωπικών δεδομένων του χρήστη για χρήση τους στη διαδικασία της σύστασης. θ. H αποφυγή του προβλήματος της καθυστερημένης εκκίνησης (cold start). ι. Τα άκρως ικανοποιητικά αποτελέσματα με βάση τις μετρικές που χρησιμοποιήθηκαν για τη δοκιμή του συστήματος.κ. Η χρησιμότητα του συστήματος είναι χαρακτηριστική για όλες τις ομάδες στόχου, καθώς δίνεται η δυνατότητα παροχής χρήσιμης πληροφορίας τόσο στον πελάτη με σύσταση ανάλογη των αναγκών του, όσο και στον πάροχο υπηρεσίας/προϊόντος, προσδιορίζοντας του τις τάσεις όσον αφορά την ικανοποίηση των πελατών. Οι κύριες μετρικές που χρησιμοποιούνται για την μέτρηση της ποιότητας των συστάσεων που παράγονται είναι οι: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE).H διατριβή ολοκληρώνεται, με προτάσεις, για μελλοντική έρευνα και επέκταση του παρόντος συστήματος.
περισσότερα
Περίληψη σε άλλη γλώσσα
One of the major questions for web users, is the way they should handle the huge volume of available information, to result in the selection of products that fit their needs and preferences. At the same time, corporations that sell products or services through the web are systematically trying to detect methods in order to decode users’ preference models, targeting to increase sales through better and focused product customization.Following the aforementioned questions, the research and scientific community that studies data analysis and marketing, has focused its efforts in the development of methodologies that will find proper and optimized answers to these questions. The majority of these methodologies result in the development of adaptive systems that use as input, data from the web and export suggestions for the users. These types of system are usually characterized as Recommender Systems.In the present Dissertation we present the methodology and results of the pilot use, of a new ...
One of the major questions for web users, is the way they should handle the huge volume of available information, to result in the selection of products that fit their needs and preferences. At the same time, corporations that sell products or services through the web are systematically trying to detect methods in order to decode users’ preference models, targeting to increase sales through better and focused product customization.Following the aforementioned questions, the research and scientific community that studies data analysis and marketing, has focused its efforts in the development of methodologies that will find proper and optimized answers to these questions. The majority of these methodologies result in the development of adaptive systems that use as input, data from the web and export suggestions for the users. These types of system are usually characterized as Recommender Systems.In the present Dissertation we present the methodology and results of the pilot use, of a new hybrid recommender system that is based in the use of Multicriteria Analysis, Sentiment Analysis and Filtering methods. The methodology results in 4 different types of recommendations.Within the methodology we manage to define the preference models of system users, which are later correlated with relevant “customer profiles” who have already chosen specific products/services.Thus, we result in personalized product recommendations for the system user, that fit her preferences. Additionally, she is given the opportunity to filter the product alternatives by choosing among a number of flat criteria, the ones that she considers as prerequisite characteristics of the final recommendations. The use of sentiment threshold results from the sentiment analysis on customers online reviews and acts as quality guarantee.The input data of the system are real online users ratings and reviews which are mined from the web using crawlers.System development phases are based in CRISP-DM Methodology. The evaluation of the recommendation system is implemented by measuring the prediction accuracy in real users experiments.The case study occurred hotels in Chania region. The most important characteristics of the specific research are the following:a.Use of big volume of real data (mined from the web), in contrast with most of the studies that use ready to use test sets.b.Use of all the available mined information in order to result to the recommendation. More specifically, we use Customer Ratings data to implement Customer Satisfaction Analysis, Customer Reviews Data for Sentiment Analysis, Static product data for the flat criteria filtering.c.Use of sentiment analysis results as recommendation quality thresholds.d.Successful development of a new approach for preference modeling, using WAP.e.Minimum data input from the system user.f.Minimum time to produce recommendation, due to the system architecture.g.Avoidance of use of personal data for the recommendation process.h.Avoidance of Cold Start problem.i.Satisfactory experimental results according to the error metrics that were used for the evaluation of the system.The main metrics that were used to evaluate the quality of recommendations were the following: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE).The dissertation sums up with suggestions for future research and extension of the new recommendation system.
περισσότερα