Περίληψη
Τα συστήματα κινητής επικοινωνίας πέμπτης γενιάς (5G) τα οποία αναμένονται τα αμέσως επόμενα χρόνια, θα αντιμετωπίσουν πρωτοφανείς απαιτήσεις όσον αφορά τον όγκο και το ρυθμό μεταδόσης δεδομένων, τις καθυστερήσεις του δικτύου, καθώς και τον αριθμό των συνδεδεμένων συσκευών. Τα μελλοντικά δικτυακά οικοσυστήματα θα περιλαμβάνουν μια πληθώρα τεχνολογιών ασύρματης επικοινωνίας (είτε τεχνολογιών 3GPP, είτε μη-3GPP) όπως το Wi-Fi, το 3G, το 4G ή LTE, το Bluetooth, κτλ. Τα σενάρια ανάπτυξης του 5G προβλέπουν έναν πολυεπίπεδο συνδυασμό μακρο- και μικρο-κυψελών, όπου πολυλειτουργικές συσκευές –οι οποίες μπορούν να υποστηρίξουν ποικιλία διαφορετικών εφαρμογών και υπηρεσιών- εξυπηρετούνται από διαφορετικές τεχνολογίες. Οι περιορισμοί που υπήρξαν στα παλιότερα συστήματα κινητών επικοινωνιών πρέπει να εξαλειφθούν, ανοίγοντας το δρόμο για ένα νέο κύμα υπηρεσιών και συνολική εμπειρία χρήστη. Ως εκ τούτου, η διαχείριση των ασύρματων πόρων μέσω της χαρτογράφησης και διανομής τους στις κινητές συσκευές, ...
Τα συστήματα κινητής επικοινωνίας πέμπτης γενιάς (5G) τα οποία αναμένονται τα αμέσως επόμενα χρόνια, θα αντιμετωπίσουν πρωτοφανείς απαιτήσεις όσον αφορά τον όγκο και το ρυθμό μεταδόσης δεδομένων, τις καθυστερήσεις του δικτύου, καθώς και τον αριθμό των συνδεδεμένων συσκευών. Τα μελλοντικά δικτυακά οικοσυστήματα θα περιλαμβάνουν μια πληθώρα τεχνολογιών ασύρματης επικοινωνίας (είτε τεχνολογιών 3GPP, είτε μη-3GPP) όπως το Wi-Fi, το 3G, το 4G ή LTE, το Bluetooth, κτλ. Τα σενάρια ανάπτυξης του 5G προβλέπουν έναν πολυεπίπεδο συνδυασμό μακρο- και μικρο-κυψελών, όπου πολυλειτουργικές συσκευές –οι οποίες μπορούν να υποστηρίξουν ποικιλία διαφορετικών εφαρμογών και υπηρεσιών- εξυπηρετούνται από διαφορετικές τεχνολογίες. Οι περιορισμοί που υπήρξαν στα παλιότερα συστήματα κινητών επικοινωνιών πρέπει να εξαλειφθούν, ανοίγοντας το δρόμο για ένα νέο κύμα υπηρεσιών και συνολική εμπειρία χρήστη. Ως εκ τούτου, η διαχείριση των ασύρματων πόρων μέσω της χαρτογράφησης και διανομής τους στις κινητές συσκευές, μέσω της πλέον κατάλληλης τεχνολογίας πρόσβασης, η οποία εξυπηρετεί τις ανάγκες των συγκεκριμένων υπηρεσιών/εφαρμογών αποκτά πρωταρχική σημασία. Οι κύριοι μηχανισμοί διαχείρισης πόρων δικτύου πρόσβασης δηλαδή η επιλογή κυψέλης (cell selection/reselection), η παράδοση υπηρεσίας από τη μία κυψέλη στην άλλη (handover), καθώς και ο έλεγχος εισαγωγής κλήσεων/υπηρεσιών (call/service admission control), είναι αυτοί που τελικώς θα μπορέσουν να προσφέρουν στους χρήστες εξαιρετικά υψηλή ποιότητα υπηρεσιών (Quality of Service - QoS) και εμπειρίας (Quality of Experience - QoE) προς τις πολύ απαιτητικές περιπτώσεις χρήσης του 5G. Αυτό θα γίνει εφικτό μέσω της βελτιστοποίησης του συσχετισμού-χαρτογράφησης μεταξύ των διαφορετικών (τελικών) κινητών συσκευών και των συνυπαρχόντων ασύρματων δικτύων πρόσβασης. Επιπλέον της οπτικής του χρήστη, οι Πάροχοι Δικτύων Κινητής θα είναι σε θέση να εκμεταλλευτούν τη μέγιστη αποδοτικότητα και χρήση των –ήδη δυσεύρετων- ασύρματων πόρων. Ευφυείς βελτιστοποιήσεις και αποδοτικές λύσεις όσον αφορά το κόστος και την κατανάλωση ενέργειας πρέπει επίσης να εισαχθούν στα δίκτυα 5ης γενιάς με σκοπό να προάγουν ένα συνεκτικό, στοχευμένο στο χρήστη και πολυδιάστατο οικοσύστημα πληροφοριών.Η παρούσα διατριβή αυτή εστιάζει στη Διαχείριση Ασύρματων Δικτυακών Πόρων (ΔΑΔΠ - RRM) από την οπτική των κύριων διαδικασιών που σχετίζονται με την επιλογή ασύρματης τεχνολογίας πρόσβασης και στρώματος κυψέλης (μικρο-, μάκρο κυψέλη, κτλ.), δηλαδή η επιλογή κυψέλης, η παράδοση υπηρεσίας και ο έλεγχος εισαγωγής κλήσεων/υπηρεσιών. Έπειτα, η διατριβή προχωρά ένα βήμα παραπέρα, με σκοπό να συνδέσει τη ΔΑΔΠ με μία από τις πιο πρόσφατες προσεγγίσεις διαχείρισης δικτυακών πόρων, δηλαδή τον «τεμαχισμό δικτύου» (network slicing), όπως αυτή εισάγεται σε περιβάλλοντα που χρησιμοποιούν τη μέθοδος της Δικτύωσης Βασισμένης στο Λογισμικό (Software Defined Networking), η οποία δημιουργεί μικρότερα, εικονικά τμήματα του δικτύου, προσαρμοσμένα και βελτιστοποιημένα για συκεκριμένες υπηρεσίες και αντίστοιχες απαιτήσεις. Σαν πρώτο βήμα, πραγματοποιήθηκε μια ολοκληρωμένη ανάλυση για τις υπάρχουσες λύσεις – όπως αυτές προδιαγράφονται στα πρότυπα της 3GPP, στη βιβλιογραφία, καθώς και τις σχετικές πατέντες-. Η διατριβή αυτή αρχικά εντοπίζει τους δεσμούς μεταξύ των προσπαθειών της ερευνητικής κοινότητας, των υλοποιήσεων της βιομηχανίας, καθώς και των δράσεων προτυποποίησης, σε μια προσπάθεια να επισημανθούν ρεαλιστικές λύσεις εφαρμογής, να προσδιοριστούν οι κύριοι στόχοι, τα πλεονεκτήματα, αλλά και οι ελλείψεις αυτών των προσπαθειών. Όπως θα δειχθεί, οι υπάρχουσες λύσεις προσπαθούν να εξισορροπήσουν σε ένα σημείο μεταξύ της βέλτιστης λύσης και μιας απλής υλοποίησης. Έτσι, οι λύσεις που έχουν προταθεί είτε είναι απλοποιημένες σε τέτοιο βαθμό που απομακρύνονται από μια ρεαλιστική πρόταση, και επιτυγχάνουν υπο-βέλτιστες λύσεις ή από την άλλη παρέχουν πολύ σημαντικές βελτιώσεις, αλλά η πολυπλοκότητά τους και η επιβάρυνση που επιβάλλουν στο δίκτυο (όσον αφορά για παράδειγμα κόστος σηματοδοσίας, ή επεξεργαστικής ισχύος) τις καθιστούν ελκυστικές για μια πραγματική ανάπτυξη.Προς αυτή την κατεύθυνση, η παρούσα διατριβή εισαγωγή ένα σύνολο μηχανισμών επίγνωσης πλαισίου για τη διαχείριση δικτυακών πόρων, που αποτελείται από τρεις επιμέρους μηχανισμούς με διακριτό ρόλο: Δύο από τους μηχανισμούς χρησιμοποιούν πληροφορία πλαισίου με σκοπό τη βελτίωση τη διαχείριση πόρων και και τη χαρτογράφηση μεταξύ ροών δεδομένων κινητών συσκευών και κυψέλης/τεχνολογίας δικτύου. Ο τρίτος μηχανισμός δρα με έναν ενισχυτικό ρόλο στους δύο προηγούμενους, μέσω μιας προ-επεξεργασίας που πραγματοποιεί πάνω σε πληροφορία πλαισίου, με σκοπό τον περιορισμό του κόστους της επιπλέον σηματοδοσίας που απαιτείται για την μεταφορά της πληροφορίας πλαισίου μεταξύ των διαφόρων ενδιαφερόμενων δικτυακών οντοτήτων. Εκτός από τους τρεις μηχανισμούς αυτούς, πραγματοποιήθηκαν εκτενείς μελέτες σε σχέση με αρχιτεκτονικά ζητήματα και πτυχές, στο πλαίσιο της επικείμενης αρχιτεκτονικής δικτύου 5G και χαρτογράφηση των προτεινόμενων μηχανισμών στα συστατικά στοιχεία του δικτύου 5G -όπως αυτά εισήχθησαν στα τελευταίο κείμενα προτυποποίησης της 3GPP-.Η πρώτη κύρια συμβολή της παρούσας διατριβής είναι το COmpAsS, ένας μηχανισμός επιλογής Τεχνολογίας Ασύρματης Πρόσβασης πολλαπλών κριτηρίων, με γνώμονα το περιβάλλον, το κύριο μέρος του οποίου λειτουργεί στην πλευρά του Εξοπλισμού Χρήστη (UE), ελαχιστοποιώντας με αυτό τον τρόπο τις επιβαρύνσεις σηματοδότησης στη διεπαφή αέρα και το φορτίο υπολογισμού στους σταθμούς βάσης. Ο μηχανισμός COmpAsS εκτελεί παρακολούθηση σε πραγματικό χρόνο, υιοθετώντας την Ασαφή Λογική (Fuzzy Logic -FL) ως μία από τις βασικές προσεγγίσεις αντίληψης και ανάλυσης της κατάστασης του δικτύου. Σε συνδυασμό με ένα σύνολο προκαθορισμένων κανόνων, υπολογίζει μια λίστα με τις καταλληλότερες διαθέσιμες επιλογές πρόσβασης δικτύου, για κάθε μία από τις ροές δεδομένων/υπηρεσίας που είναι ενεργές εκείνη τη στιγμή. Τα πλεονεκτήματα του COmpAsS παρουσιάζονται μέσω μιας εκτεταμένης σειράς σεναρίων προσομοίωσης, ως μέρος των περιπτώσεων χρήσης εξαιρετικά πυκνών δικτύων (UDN) 5G. Τα αποτελέσματα αποδεικνύουν τον τρόπο με τον οποίο ο προτεινόμενος μηχανισμός βελτιστοποιεί τους βασικούς δείκτες επιδόσεων (Key Performance Indicators - KPIs), όταν αντιπαρατίθεται σε έναν από τους καθιερωμένους LTE αλγορίθμους.Η δεύτερη σημαντική συμβολή της παρούσας διατριβής είναι η Μηχανή Εξόρυξης Πλαισίου και Δημιουργίας Προφίλ (Context Extraction and Profiling Engine – CEPE), ένας μηχανισμός διαχείρισης πόρων, ο οποίος αναλύει συμπεριφορικά πρότυπα των χρηστών/κινητών συσκευών, εξάγει ουσιώδη γνώση και δημιουργεί αντίστοιχα προφίλ/πρότυπα συμπεριφοράς, με σκοπό να τα χρησιμοποιήσει για βέλτιστο προγραμματισμό πόρων, καθώς επίσης και για την μελλοντική πρόβλεψη απαιτήσεων πόρων. Το CEPE συλλέγει πληροφορίες σχετικά με τους χρήστες, τις υπηρεσίες, τις κινητές συσκευές, καθώς και τις συνθήκες δικτύου, και μέσω επεξεργασίας -χωρίς σύνδεση, ετεροχρονισμένα- αποκτά ένα μοντέλο γνώσης, το οποίο στη συνέχεια χρησιμοποιείται για τη βελτιστοποίηση των κύριων μηχανισμών ΔΑΔΠ (RRM). Το προαναφερθέν μοντέλο γνώσης μεταφράζεται έπειτα σε προφίλ χρηστών/κινητών συσκευών, τα οποία εφαρμόζονται ως είσοδος κατά τις διαδικασίες ΔΑΔΠ. Η βιωσιμότητα και η εγκυρότητα του CEPE επιδεικνύεται μέσω εκτεταμένων σεναρίων προσομοίωσης.Η τρίτη σημαντική συμβολή είναι το CIP (Context Information Preprocessor), ένας μηχανισμός προεπεξεργασίας πληροφοριών πλαισίου, με στόχο τον εντοπισμό και την απόρριψη περιττών δεδομένων κατά τη σηματοδοσία πριν από την εξαγωγή της γνώσης. Το CIP θα μπορούσε να θεωρηθεί ως αναπόσπαστο μέρος των προαναφερθέντων σχημάτων σχεδίασης, δηλαδή των COmpAsS και CEPE. Ο προτεινόμενος μηχανισμός περιλαμβάνει τη συγκέντρωση και συμπίεση πληροφοριών πλαισίου σχετικά με το δίκτυο ανά μοναδικό αναγνωριστικό κινητής συσκευής/χρήστη, -όπως η διεθνής ταυτότητα συνδρομητή κινητού (IMSI)-, καθώς και τεχνικές που σχετίζονται με την αναγνώριση και την απόρριψη δεδομένων πλαισίου που δε συμβάλλουν στην βελτίωση ή διόρθωση του πρόφιλ χρήστη, πριν από οποιαδήποτε μετάδοση προς το CEPE (ή άλλο μηχανισμό ΔΑΔΠ). Οι βελτιώσεις και τα κέρδη του CIP στη διαδικασία της σηματοδοσίας απεικονίζονται μέσω λεπτομερούς αναλυτικής προσέγγισης, η οποία καθορίζεται από τις καθιερωμένες απαιτήσεις περί χρήσης 5G.Ως τελική σημαντική συμβολή αυτής της διατριβής, διεξάγεται μια εκτεταμένη ανάλυση όσον αφορά τη διασύνδεση των CEPE-COmpAsS, στο πλαίσιο της επικείμενης αρχιτεκτονικής δικτύου 5G και της χαρτογράφησης αυτών με τα τελευταία συστατικά στοιχεία του δικτύου 5G –όπως αυτά παρουσιάστηκαν στις τελευταίες δημοσιεύσεις προτυποποίησης της 3GPP -. Το έργο σε αυτή την ενότητα δείχνει πώς μπορεί να παρουσιαστεί το προτεινόμενο πλαίσιο ως μέρος των συνιστωσών του δικτύου 5G και των λειτουργιών που εισάγονται σε περιβάλλοντα με δυνατότητα SDN, όπως η προσέγγιση του «Τεμαχισμού Δικτύου», ο Μηχανισμός Ανάλυσης Δικτυακών Δεδομένων (Network Data Analytics Function – NWDAF), η λειτουργία επιλογής βέλτιστου τεμαχίου δικτύου (Network Slice Selection Function) - προς περαιτέρω βελτιστοποίηση της διανομής και της διαχείρισης των διαθέσιμων πόρων δικτύου μεταξύ των συσκευών-, καθώς και το ATSSS – Access Traffic Steering, Switching and Splitting, μια οντότητα υπεύθυνη για τη διαχείριση των ροών δεδομένων των UE –με δυνατότητες επαναδρομολόγησης, διαχωρισμού και σύνδεσης της κάθε ροής με την αντίστοιχη βέλτιστη, διαθέσιμη τεχνολογία πρόσβασης.Δύο συμπληρωματικές μελέτες περιλαμβάνονται –τέλος- σε αυτή τη διατριβή: μια αρχική ανάλυση των πολιτικών μηχανικής κυκλοφορίας (Traffic Engineering) που βασίζονται σε προφίλ χρηστών που προκύπτουν από το CEPE, καθώς και μία περίπτωση χρήσης 5G που σχετίζεται με τον τομέα του Διαδικτύου των Πραγμάτων - και πιο συγκεκριμένα την «Καλλιέργεια Ακριβείας» (Precision Farming), με σκοπό να δοθεί έμφαση σε ρητές απαιτήσεις των περιπτώσεων χρήσης 5G, όπως η επικοινωνία τύπου μηχανής κρίσιμης σημασίας (Mission-Critical Machine Type Communication).
περισσότερα
Περίληψη σε άλλη γλώσσα
The fifth-generation (5G) mobile communication systems, which are expected to emerge in the forthcoming years, will address unprecedented demands in terms of system capacity, service latency and number of connected devices. Future 5G network ecosystems will comprise a plethora of 3GPP and non-3GGP Radio Access Technologies (RATs), such as Wi-Fi, 3G, 4G or LTE, Bluetooth, etc. Deployment scenarios envision a multi-layer combination of macro, micro and femto cells where multi-mode end devices, supporting diverse applications, are served by different technologies. Limitations previously posed by legacy generation systems need to be eliminated, paving the way to a new wave of services and overall experience for the user. As a result, the management of radio resources via mapping the end devices to the most appropriate access network becomes of paramount importance; the primary Radio Resource Management (RRM) mechanisms, i.e. cell selection/reselection, handover and call admission control w ...
The fifth-generation (5G) mobile communication systems, which are expected to emerge in the forthcoming years, will address unprecedented demands in terms of system capacity, service latency and number of connected devices. Future 5G network ecosystems will comprise a plethora of 3GPP and non-3GGP Radio Access Technologies (RATs), such as Wi-Fi, 3G, 4G or LTE, Bluetooth, etc. Deployment scenarios envision a multi-layer combination of macro, micro and femto cells where multi-mode end devices, supporting diverse applications, are served by different technologies. Limitations previously posed by legacy generation systems need to be eliminated, paving the way to a new wave of services and overall experience for the user. As a result, the management of radio resources via mapping the end devices to the most appropriate access network becomes of paramount importance; the primary Radio Resource Management (RRM) mechanisms, i.e. cell selection/reselection, handover and call admission control will be able to offer extremely high Quality of Service (QoS) and Experience (QoE) to the users, towards the very demanding 5G use case requirements; this will be realised via an optimal association between the diverse end devices and the coexisting available access networks. Besides the user’s perspective, the Mobile Network Operators (MNOs) will be able to take advantage of the maximum efficiency and utilization over the –already scarce- wireless resources. Intelligent optimizations, as well as cost and energy efficient solutions need to be introduced in 5G networks in order to promote a consistent, user-centred and all-dimensional information ecosystem.This thesis primarily focuses on the radio resource management (RRM) from the perspective of the primary RAT and cell layer selection processes (i.e., cell (re)selection, handover, admission control); afterwards, it goes one step beyond, in order to link the RRM with one of the latest RRM optimization approaches, i.e. the Network Slicing, as introduced in Software Defined Networking (SDN)-enabled environments, which creates smaller, virtual “portions” of the network, adapted and optimized for specific services/requirements. As a first step, a comprehensive analysis for the existing solutions -as these are specified in 3GPP standards, research papers, and patents has taken place. This thesis initially identifies the links between the research community efforts, the industry implementations, as well as the standardization efforts, in an attempt to highlight realistic solution implementations, identify the main goals, advantages and shortcomings of these efforts. As will be shown, existing solutions attempt to balance between implementation simplicity and solution optimality. Thus, solutions are either simple to implement but achieve sub-optimal solutions or provide significant improvements but their complexity and the burden placed on the network components –in terms of processing, as well as signaling resources- renders them unattractive for a real-life deployment.Towards this end, this thesis introduces a context-based radio resource management (RRM) framework, comprised of three distinct mechanisms: Two out of the three mechanisms exploit contextual information with the aim of optimising the resource management and UE flows-RAT mapping, while the third mechanism acts with an augmenting role to the former two, by pre-processing the contextual information required by such, context-based mechanisms and –thus- by limiting the signaling cost required for communicating this contextual information among network entities. In addition to the three mechanisms, comprehensive analysis has taken place in relation to architectural aspects, in the context of the forthcoming 5G network architecture and by mapping them with the latest 5G network components –as these were introduced in the latest 3GPP work-.The first major contribution of this thesis is COmpAsS, a context-aware, multi-criteria RAT selection mechanism, the main part of which operates on the User Equipment (UE) side, minimizing signaling overhead over the air interface and computation load on the base stations. COmpAsS mechanism performs real-time monitoring and exploits the Fuzzy Logic (FL) approach as the core logic component, responsible for the perception of the network situation and -in combination with a set of pre-defined rules, calculates a list of the most suitable available access network options, for each one of the UE’s active data flows/services. The merits of COmpAsS are showcased via an extensive series of simulation scenarios, as part of 5G ultra dense networks (UDN) use cases. The results prove how the proposed mechanism optimises Key Performance Indicators (KPIs), when juxtaposed to a well-established LTE handover algorithm. The second major contribution of the current thesis the Context Extraction and Profiling Engine (CEPE), a resource management framework, which analyzes user behavioral patterns, extracts meaningful knowledge and performs user profiling in order to apply it for optimal resource planning, as well as prediction of resource requirements. CEPE collects information about users, services, terminals and network conditions and –based on offline processing– derives a knowledge model, which is subsequently used for the optimization of the primary RRM mechanism. Then, the extracted context information is translated into user profiles and is finally applied as input for enhanced cell (re)selection, handover or admission control. The viability and validity of CEPE is demonstrated via an extensive set of simulation scenarios.The third major contribution is CIP, a Context Information Pre-processing scheme, aiming to identify and discard redundant or unnecessary data prior to network signaling and targeting to reduce the data used for knowledge extraction. CIP could be considered as an integral part of the afore described profiling schemes, i.e. COmpAsS and CEPE. The module comprises aggregating and compressing mobile network-related context information per unique identifier, such as the end device’s International Mobile Subscriber Identity (IMSI), as well as techniques related to identifying and discarding user profile-redundant or unnecessary context data, before any transmission to CEPE. CIP gains are illustrated via a detailed analytical approach, guided by well-established 5G use case requirements.As a final major contribution of this thesis, a comprehensive analysis takes place with regard to the CEPE-COmpAsS interworking, in the context of the forthcoming 5G network architecture and by mapping them with the latest 5G network components –as these were introduced in the latest 3GPP work-. The work in this section shows how the proposed framework can be instantiated as part of the 5G network components and functions introduced in SDN-enabled environments, such as the Network Slicing approach, the Network Data Analytics and the Network Slice Selection Functions, towards further optimising the distribution and management of the available infrastructure and network resources among the UEs, as well as the Access Traffic Steering, Switching and Splitting (ATSSS), responsible for managing the UE data flows and mapping each single UE flow with the optimal available access technology.Two supplementary studies are finally included in this dissertation: a preliminary analysis on traffic engineering policies based on user profiling realised by CEPE, as well as a 5G use case related to the Internet of Things domain -and more specifically, Precision Farming-, aiming to highlight explicit requirements such as mission-critical machine type communication.
περισσότερα