Σύγχρονες μεθοδολογίες ανάλυσης ιατρικών δεδομένων: εφαρμογή στην αθηρωμάτωση

Περίληψη

Η πολυπαραγοντική φύση της αθηρωματικής νόσου, δυσχεραίνει και περιπλέκει εξαιρετικά το ζήτημα της πρόγνωσης με μη επεμβατικές μεθόδους. Σκοπός της παρούσης μελέτης ήταν να διερευνηθεί η δυνατότητα που προσφέρεται σήμερα για έγκαιρη πρόγνωση, κάνοντας χρήση Ιατρικών παραμέτρων, μη επεμβατικών εξετάσεων, αλλά και των πιο σύγχρονων εργαλείων από το χώρο της Μηχανικής.Μελετήθηκαν 177 στεφανιογραφηθέντες ασθενείς, χωρίς προηγουμένως γνωστή στεφανιαία νόσο. Συλλέχθησαν εκτενή δεδομένα, μεταξύ των οποίων: δημογραφικά στοιχεία, ανθρωπομετρικές μετρήσεις, υπερηχοκαρδιογραφικές εξετάσεις και υπερηχογραφικοί δείκτες εκτίμησης σπλαγχνικής παχυσαρκίας και της κατάστασης των καρωτίδων και μηριαίων αρτηριών των ασθενών.Πραγματοποιήθηκαν βιοχημικές μετρήσεις και εκτιμήθηκε ποσοτικά η συγκέντρωση πλέοντων 60 πρωτεϊνών στον ορό των ασθενών χρησιμοποιώντας τη μέθοδο Luminex xMAP multiplex immunoassay.Πραγματοποιήθηκε περιγραφική και επαγωγική στατιστική ανάλυση για την εξαγωγή των πρώτων συμπερασμάτων. ...
περισσότερα

Περίληψη σε άλλη γλώσσα

The multifactorial nature of atherosclerosis and the absence of a single biomarker inhibit its accurate prediction. Aim of the present study is to investigate whether the prediction of the outcome of coronary angiography can become feasible by using the most extensive -to date- array of established and novel parameters, harnessed by state-of-the-art machine learning methodologies.To this end, 177 subjects who were planned for coronary angiography enrolled to the study. Demographic, clinical, anthropometric, lifestyle, exercise and dietary data were collected. Ultrasonographic indices of heart function, peripheral artery examination and regional adiposity were also extracted. The concentration of common serum markers as well as more than 60 proteins were identified using Luminex xMAP immunoassay.Following statistical analysis, a series of machine learning classifiers was implemented in R. Numerous biomarkers were selected as being highly informative but none could individually predict a ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/41670
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/41670
ND
41670
Εναλλακτικός τίτλος
State-of-the-art methodologies for analysing medical data: an application on atherosclerosis
Συγγραφέας
Βλάχος, Ιωάννης του Σταμάτιος
Ημερομηνία
2014
Ίδρυμα
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής. Τομέας Χειρουργικής. Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Έρευνας Ν. Σ. ΧΡΗΣΤΕΑΣ
Εξεταστική επιτροπή
Περρέα Δέσποινα
Τσιχριντζής Γεώργιος
Νικητέας Νικόλαος
Στεφανάδης Χριστόδουλος
Χατζηιωάννου Ανδρέας
Κλωνάρης Χρήστος
Τούτουζας Κωνσταντίνος
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΕπιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Ιατρική και Επιστήμες ΥγείαςΚλινική Ιατρική
Λέξεις-κλειδιά
Στεφανιογραφία; Στεφανιαία νόσος; Αναγνώριση προτύπων; Μηχανικής μάθηση
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
340 σ., εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)