Ευστάθεια και χάος χαμιλτώνιων συστημάτων πολλών βαθμών ελευθερίας: από την κλασική στη στατιστική μηχανική

Περίληψη

Το κύριο μέρος της διατριβής αρχίζει στο Κεφάλαιο 4 όπου παρουσιάζονται πρωτότυπα ερευνητικά αποτελέσματα της διατριβής που αφορούν στην κανονική και χαοτική δυναμική Χαμιλτώνιων συστημάτων λίγων βαθμών ελευθερίας. Περιγράφονται αποτελέσματα πάνω στη συμπεριφορά δεικτών διάκρισης οργανωμένης και χαοτικής δυναμικής στα συστήματα αυτά και γίνεται σύγκριση με τα αντίστοιχα της διεθνούς βιβλιογραφίας. Τέλος, αναφέρονται αποτελέσματα από τη θεωρία και την εφαρμογή της μεθόδου του Γενικευμένου Δείκτη Ευθυγράμμισης GALI, που αποτελεί ένα από τα πιο βασικά νέα στοιχεία της διατριβής, σε μη ολοκληρώσιμα Χαμιλτώνια συστήματα δύο και τριών βαθμών ελευθερίας. Το Κεφάλαιο 5 ασχολείται με την παρουσίαση πρωτότυπων ερευνητικών αποτελεσμάτων σε Χαμιλτώνια δυναμικά συστήματα πολλών βαθμών ελευθερίας. Εδώ, εισάγονται νέες μέθοδοι για την μελέτη των περιοχών κανονικής και χαοτικής συμπεριφοράς συστημάτων πολλών βαθμών ελευθερίας με σκοπό να κατανοηθεί η συμπεριφορά των συστημάτων αυτών στο θερμοδυν ...
περισσότερα

Περίληψη σε άλλη γλώσσα

The main part of the thesis begins with Chapter 3, where new research results are presented which concern the regular and chaotic dynamics of Hamiltonian systems of few degrees of freedom. Results are described on the behavior of indices distinguishing organized from chaotic motion in these systems and a comparison is made with corresponding results in the international literature. Then, new findings are reported on the theory and application of the method of the Generalized Alignment Index GALI, which is one of the most basic discoveries of the thesis in nonintegrable Hamiltonian systems of 2 and 3 degrees of freedom. Chapter 5 deals with the presentation of original research results in Hamiltonian systems of many degrees of freedom. Here new methods are introduced for the study of regions of regular and chaotic behavior of multi degree of freedom systems with the primary aim of understanding the behavior of these systems in the thermodynamic limit to give an answer to the crucial ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/26173
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/26173
ND
26173
Εναλλακτικός τίτλος
Stability and chaos in hamiltonian systems of many degrees of freedom: from classical to statistical mechanics
Συγγραφέας
Αντωνόπουλος, Χρήστος (Πατρώνυμο: Γεώργιος)
Ημερομηνία
2007
Ίδρυμα
Πανεπιστήμιο Πατρών. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Εξεταστική επιτροπή
Μπούντης Αναστάσιος
Πνευματικός Σπυρίδων
Βραχάτης Μιχαήλ
Τσουμπελής Δημήτριος
Παπαγεωργίου Βασίλειος
Βαν Ντερ Βέιλε Ιάκωβος
Γκίκας Δημήτριος
Επιστημονικό πεδίο
Φυσικές Επιστήμες
Μαθηματικά
Λέξεις-κλειδιά
Δυναμικά συστήματα; Χαμιλτώνια συστήματα; Πολλοί βαθμοί ελευθερίας; Ευστάθεια; Χάος; Κλασική μηχανική; Στατιστική μηχανική
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
xiii, 184 σ., πιν., σχημ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)