Περίληψη
Αντικείμενο της διατριβής είναι η εφαρμογή της αυστηρής ηλεκτρομαγνητικής θεωρίας ολοκληρωτικών εξισώσεων και συναρτήσεων Green για την ανάλυση ενός συνόλου οπτικών διατάξεων με έντονο θεωρητικό και πρακτικό ενδιαφέρον στο σύγχρονο περιβάλλον ολοκληρωμένων οπτικών κυκλωμάτων και οπτικών ινών. Η μελέτη καλύπτει ένα ευρύ φάσμα συζευγμένων συστημάτων οπτικών κυματοδηγών και κοιλοτήτων, που περιλαμβάνει: • Ολοκληρωμένα οπτικά φίλτρα διηλεκτρικών συντονιστών κυλινδρικής συμμετρίας σε σύζευξη με επίπεδους κυματοδηγούς. • Κυματοδηγούς περιοδικών σειρών απευθείας συζευγμένων οπτικών συντονιστών. • Συζευγμένα συστήματα οπτικών ινών και σφαιρικών διηλεκτρικών κοιλοτήτων. • Οπτικά φράγματα διηλεκτρικών σφαιρών σε οπτικές ίνες. • Συζεύκτες μη παράλληλων οπτικών ινών. • Οπτικές ίνες φωτονικού κρυστάλλου. • Κατευθυντικούς συζεύκτες οπτικών ινών φωτονικού κρυστάλλου σε γραμμική και μη γραμμική λειτουργία. Σκοπός της διατριβής είναι η ανάπτυξη της αυστηρότερης δυνατής, πλήρως κυματικής και διανυσματι ...
Αντικείμενο της διατριβής είναι η εφαρμογή της αυστηρής ηλεκτρομαγνητικής θεωρίας ολοκληρωτικών εξισώσεων και συναρτήσεων Green για την ανάλυση ενός συνόλου οπτικών διατάξεων με έντονο θεωρητικό και πρακτικό ενδιαφέρον στο σύγχρονο περιβάλλον ολοκληρωμένων οπτικών κυκλωμάτων και οπτικών ινών. Η μελέτη καλύπτει ένα ευρύ φάσμα συζευγμένων συστημάτων οπτικών κυματοδηγών και κοιλοτήτων, που περιλαμβάνει: • Ολοκληρωμένα οπτικά φίλτρα διηλεκτρικών συντονιστών κυλινδρικής συμμετρίας σε σύζευξη με επίπεδους κυματοδηγούς. • Κυματοδηγούς περιοδικών σειρών απευθείας συζευγμένων οπτικών συντονιστών. • Συζευγμένα συστήματα οπτικών ινών και σφαιρικών διηλεκτρικών κοιλοτήτων. • Οπτικά φράγματα διηλεκτρικών σφαιρών σε οπτικές ίνες. • Συζεύκτες μη παράλληλων οπτικών ινών. • Οπτικές ίνες φωτονικού κρυστάλλου. • Κατευθυντικούς συζεύκτες οπτικών ινών φωτονικού κρυστάλλου σε γραμμική και μη γραμμική λειτουργία. Σκοπός της διατριβής είναι η ανάπτυξη της αυστηρότερης δυνατής, πλήρως κυματικής και διανυσματικής ανάλυσης, που επιβάλλει η μελέτη των σχετικών ηλεκτρομαγνητικών φαινόμενων κυματοδήγησης, σύζευξης και σκέδασης που, στις οπτικές αυτές διατάξεις, εξελίσσονται στην κλίμακα διαστάσεων του μήκους κύματος. Οι παρουσιαζόμενες μέθοδοι είναι γενικές και ξεπερνούν τους θεωρητικούς περιορισμούς ως προς το βαθμό σύζευξης και τις ηλεκτρικές διαστάσεις των διηλεκτρικών σωμάτων προηγούμενων προσεγγιστικών τεχνικών. Παρουσιάζουν επομένως μεγάλη χρησιμότητα στην ακριβή εκτίμηση και σχεδίαση κατασκευαστικών παραμέτρων αλλά και περαιτέρω στη διερεύνηση νέων δυνατοτήτων και εφαρμογών. Οι αριθμητικές εφαρμογές, που προκύπτουν με αναλυτική αντιμετώπιση των σχετικών ολοκληρωτικών εξισώσεων μέσω της μεθόδου ροπών Galerkin, εστιάζουν ακριβώς σε φαινόμενα που μπορούν να μελετηθούν μόνο στα πλαίσια της παρούσας αναλυτικής οδού. Τα μαθηματικά εργαλεία που στηρίζουν τον αναλυτικό χαρακτήρα της διατριβής είναι κλασικά θεωρήματα και μετασχηματισμοί κυματικών συναρτήσεων μεταξύ διαφορετικών συστημάτων συντεταγμένων καθώς και στοιχεία της θεωρίας περιοδικών διατάξεων. Στην περίπτωση της σύζευξης μη παράλληλων οπτικών ινών, η ακριβής αντιμετώπιση του προβλήματος απαιτεί τον αναλυτικό μετασχηματισμό κυλινδρικών κυμάτων μεταξύ συστημάτων με ασύμβατους άξονες. Ο μαθηματικός αυτός τύπος, που γενικεύει το κλασικό θεώρημα Graf κυλινδρικών συναρτήσεων, δεν υφίσταται στη βιβλιογραφία και εξάγεται στα πλαίσια της διατριβής. Αποτελεί ένα νέο και σημαντικό θεωρητικό αποτέλεσμα με γενικότερη συνεισφορά στη ανάλυση προβλημάτων κυματικής.
περισσότερα
Περίληψη σε άλλη γλώσσα
The scope of the thesis is the application of the rigorous electromagnetic theory of integral equations and Green’s functions to the analysis of a set of optical devices with intense theoretical and practical interest in the modem environment of integrated optical circuits and optical fibers. The study covers a wide spectrum of coupled systems of optical waveguides and cavities, including: • Integrated optical filters of dielectric resonators with cylindrical symmetry coupled to planar waveguides. • Waveguides of periodic arrays of directly coupled optical resonators. • Coupled systems of optical fibers and spherical dielectric cavities. • Optical gratings of dielectric spheres in optical fibers. • Couplers of non-parallel optical fibers. • Photonic crystal fibers. • Photonic crystal fiber directional couplers in linear and nonlinear operation. The purpose of the thesis is the development of the most rigorous possible, full-wave and vectorial analysis that is required to study the rele ...
The scope of the thesis is the application of the rigorous electromagnetic theory of integral equations and Green’s functions to the analysis of a set of optical devices with intense theoretical and practical interest in the modem environment of integrated optical circuits and optical fibers. The study covers a wide spectrum of coupled systems of optical waveguides and cavities, including: • Integrated optical filters of dielectric resonators with cylindrical symmetry coupled to planar waveguides. • Waveguides of periodic arrays of directly coupled optical resonators. • Coupled systems of optical fibers and spherical dielectric cavities. • Optical gratings of dielectric spheres in optical fibers. • Couplers of non-parallel optical fibers. • Photonic crystal fibers. • Photonic crystal fiber directional couplers in linear and nonlinear operation. The purpose of the thesis is the development of the most rigorous possible, full-wave and vectorial analysis that is required to study the relevant waveguiding, coupling and scattering electromagnetic phenomena, which, in these optical devices, take place within dimensions of wavelength scale. The presented methods are generic and overcome the theoretical limitations for the coupling strength and the electrical dimensions of the dielectric objects of previous approximate techniques. They are therefore of great utility in the accurate estimation and design of structural parameters and furthermore to the investigation of new potentialities and applications. The numerical examples, obtained through treating the involved integral equations with the Galerkin method of moments, focus indeed on phenomena that can be studied only in the framework of present analytical path. The mathematical tools that support the analytical character of the thesis are classic theorems and transformations of wave functions between different coordinate systems and elements of the theory of periodic structures. In the case of coupling between non-parallel optical fibers, the accurate treatment of the problem requires the analytical transformation of cylindrical waves between systems with skew axes. The mathematical type, generalizing classic Graf’s theorem for cylindrical functions, does not exist in the literature and is derived in the thesis. It is a new and important theoretical result with general application to the analysis of wave problems.
περισσότερα