Ανάπτυξη επιβλεπόμενων και μη επιβλεπόμενων μεθόδων μηχανικής μάθησης για την μοντελοποίηση χρονικά εξελισσόμενων συστημάτων με εφαρμογές σε έξυπνα ηλεκτρικά δίκτυα

Περίληψη

Η παρούσα διδακτορική διατριβή (Δ.Δ.) άπτεται της μελέτης των χρονικά εξελισσόμενων συστημάτων με σκοπό την ανάπτυξη μεθοδολογιών για την μοντελοποίησή τους και κατ’ επέκταση την χρήση τους στο πρόβλημα της πρόβλεψης της κατανάλωσης του ηλεκτρικού φορτίου από υποσταθμούς μέσης και υψηλής τάσης. Η λειτουργία τους βασίζεται στην αλγοριθμική προσαρμογή της σχέσης που περιγράφει την είσοδο και την έξοδο των δεδομένων αυτών σε μορφή χρονικών ακολουθιών ή χρονοσειρών. Βασικός σκοπός της διδακτορικής διατριβής είναι να προτείνει και να διερευνήσει την εφαρμογή νέων μεθόδων μηχανικής μάθησης με και χωρίς επίβλεψη για την πρόβλεψη χαρακτηριστικών από χρονοσειρές. Κατά συνέπεια, ένα σημαντικό τμήμα του θεωρητικού μέρους της εργασίας καταλαμβάνει η ανάλυση χρονοσειρών ως εργαλείο της μοντελοποίησης χρονικά εξελισσόμενων συστημάτων και η μελέτη της πρόβλεψης χρονοσειρών. Στη συνέχεια διεξάγεται μια ενδελεχής βιβλιογραφική ανασκόπηση σχετικά με τις μεθόδους που έχουν προταθεί για την πρόβλεψη του η ...
περισσότερα

Περίληψη σε άλλη γλώσσα

The present doctoral thesis concerns the study of time evolving systems with the aim of developing methodologies for their modeling and, their consequent use in the problem of forecasting the consumption of electrical load from medium and high voltage substations. Their operation is based on the algorithmic adaptation of the relationship that describes the input and output data in the form of time sequences or time series. The main purpose of this doctoral thesis is to propose and investigate the application of new supervised and unsupervised machine learning methods for prediction of features extracted from time series. Consequently, an important part of the theoretical section of this work is occupied by time series analysis as a tool for modeling of time evolving systems and the study of time series forecasting. A thorough literature review is then conducted on the methods that have been proposed for electric load forecasting, through which, specific research gaps that arise during ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/54881
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/54881
ND
54881
Εναλλακτικός τίτλος
A machine learning perspective of supervised and unsupervised methods for modelling time evolving systems with applications in smart grids
Συγγραφέας
Γιαμαρέλος, Νικόλαος (Πατρώνυμο: Αντώνιος)
Ημερομηνία
2023
Ίδρυμα
Πανεπιστήμιο Δυτικής Αττικής. Σχολή Μηχανικών. Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών
Εξεταστική επιτροπή
Ζώης Ηλίας
Αλεξανδρίδης Αλέξανδρος
Κουλούρας Γρηγόριος
Ψωμόπουλος Κωνσταντίνος
Ζέρβας Ευάγγελος
Καλύβας Δημήτριος
Καραπιδάκης Εμμανουήλ
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΕπιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική ➨ Τεχνητή νοημοσύνη
Επιστήμες Μηχανικού και ΤεχνολογίαΕπιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ ➨ Ηλεκτρική και Ηλεκτρονική μηχανική
Λέξεις-κλειδιά
Επιβλεπόμενη μάθηση; Mη επιβλεπόμενη μάθηση; Aραιή αναπαράσταση; Πρόβλεψη μικτού φορτίου; Νευρωνικά δίκτυα γράφων; Γράφοι ορατότητας; Εκμάθηση ανσάμπλ
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)