Περίληψη
Οι οργανικές οπτοηλεκτρονικές διατάξεις, όπως είναι οι οργανικές δίοδοι εκπομπής φωτός (Organic Light Emitting Diodes, OLEDs) και τα οργανικά φωτοβολταϊκά (Organic Photovoltaics, OPVs) αποτελούνται από ένα ή περισσότερα οργανικά υμένια (πολυμερικά ή μη), τα οποία εναποτίθενται μεταξύ δύο ηλεκτροδίων, ένα διαφανές που είναι η άνοδος της διάταξης και μια μεταλλική κάθοδο. Παρά τη ραγδαία εξέλιξη στο σχεδιασμό οργανικών υλικών και στη κατασκευή αποδοτικών διατάξεων, δεν έχει επιτευχθεί ακόμη αντίστοιχη βελτίωση στην τροποποίηση των διεπιφανειών ηλεκτροδίου/οργανικού υμενίου, με τα κριτήρια σχεδιασμού και τροποποίησης διεπιφανειών για την κατασκευή των διατάξεων να μην είναι σαφή. Αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η μελέτη τροποποίησης διεπιφανειών οργανικών διόδων εκπομπής φωτός και οργανικών φωτοβολταϊκών διατάξεων, με χρήση οξειδίων μετάλλων μετάπτωσης, και συγκεκριμένα οξειδίων του μολυβδαινίου (Μο) και βολφραμίου (W). Τα οξείδια των μετάλλων μετάπτωσης έχουν βρει χ ...
Οι οργανικές οπτοηλεκτρονικές διατάξεις, όπως είναι οι οργανικές δίοδοι εκπομπής φωτός (Organic Light Emitting Diodes, OLEDs) και τα οργανικά φωτοβολταϊκά (Organic Photovoltaics, OPVs) αποτελούνται από ένα ή περισσότερα οργανικά υμένια (πολυμερικά ή μη), τα οποία εναποτίθενται μεταξύ δύο ηλεκτροδίων, ένα διαφανές που είναι η άνοδος της διάταξης και μια μεταλλική κάθοδο. Παρά τη ραγδαία εξέλιξη στο σχεδιασμό οργανικών υλικών και στη κατασκευή αποδοτικών διατάξεων, δεν έχει επιτευχθεί ακόμη αντίστοιχη βελτίωση στην τροποποίηση των διεπιφανειών ηλεκτροδίου/οργανικού υμενίου, με τα κριτήρια σχεδιασμού και τροποποίησης διεπιφανειών για την κατασκευή των διατάξεων να μην είναι σαφή. Αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η μελέτη τροποποίησης διεπιφανειών οργανικών διόδων εκπομπής φωτός και οργανικών φωτοβολταϊκών διατάξεων, με χρήση οξειδίων μετάλλων μετάπτωσης, και συγκεκριμένα οξειδίων του μολυβδαινίου (Μο) και βολφραμίου (W). Τα οξείδια των μετάλλων μετάπτωσης έχουν βρει χρήση τα τελευταία χρόνια ως υμένια έγχυσης/εξαγωγής φορέων φορτίου ανάμεσα στα ηλεκτρόδια και στους οργανικούς ημιαγωγούς. Επιπλέον, λόγω του ανόργανου χαρακτήρα τους, είναι πιο σταθερά από τα οργανικά υμένια που χρησιμοποιούνται γι’ αυτό το σκοπό, με αποτέλεσμα να βελτιώνεται η σταθερότητα των διατάξεων. Αρχικά, μελετάται η εναπόθεση των οξειδίων του μολυβδαινίου και βολφραμίου σε διάφορες συνθήκες. Η εναπόθεση σε υποστοιχειομετρικό περιβάλλον επηρεάζει τόσο τη στοιχειομετρία και την ηλεκτρονική δομή τους, όσο και τις μορφολογικές και οπτοηλεκτρικές ιδιότητές τους. Πιο συγκεκριμένα, η εισαγωγή υδρογόνου στο πλέγμα των οξειδίων του Mo και W οδηγεί στην εμφάνιση νέων κατειλημμένων καταστάσεων μέσα στο ενεργειακό τους χάσμα κοντά στο επίπεδο Fermi και στη μείωση του έργου εξόδου τους. Κατόπιν, κατασκευάστηκαν διατάξεις OLEDs και OPVs, χρησιμοποιώντας τα υμένια στοιχειομετρικών και υποστοιχειομετρικών οξειδίων του μολυβδαινίου και βολφραμίου ως στρώματα έγχυσης και εξαγωγής οπών, αντίστοιχα. Η ενσωμάτωση υποστοιχειομετρικών οξειδίων του Μο και W στις διατάξεις OLEDs και OPVs οδηγεί σε αύξηση της απόδοσής τους, σε σύγκριση με αυτήν των διατάξεων με τα στοιχειομετρικά οξείδια. Η αύξηση αυτή οφείλεται στην ευνοϊκή ευθυγράμμιση των ενεργειακών επιπέδων στη διεπιφάνεια μεταξύ της ανόδου και του οργανικού υμενίου, λόγω των καταστάσεων μέσα στο ενεργειακό χάσμα των οξειδίων, μειώνοντας το φραγμό έγχυσης/εξαγωγής των οπών. Τέλος, υμένια υποστοιχειομετρικών οξειδίων του μολυβδαινίου και βολφραμίου χρησιμοποιούνται ως στρώματα εξαγωγής οπών σε οργανικά φωτοβολταϊκά, αφού πρώτα έχουν υποβληθεί σε ανόπτηση με μικροκύματα. Η έκθεση των οξειδίων σε μικροκύματα μετατοπίζει περαιτέρω το έργο εξόδου τους σε υψηλότερες ενέργειες, με αποτέλεσμα την ευνοϊκότερη εξαγωγή των οπών και την αύξηση της απόδοσης των διατάξεων. Επίσης, η ανόπτηση των οξειδίων του Μο και W με μικροκύματα επηρεάζει τη νανομορφολογία/κρυσταλλικότητα του οργανικού υμενίου, το οποίο επιστρώνεται πάνω σε αυτά, ενισχύοντας τη μεταφορά των οπών προς την άνοδο και ενισχύοντας τα ηλεκτρικά χαρακτηριστικά των διατάξεων OPVs. Τα αποτελέσματα αυτά αποδεικνύουν τις τεράστιες δυνατότητες των υποστοιχειομετρικών οξειδίων του μολυβδαινίου και βολφραμίου για χρήση ως υμένια διεπιφανειακής τροποποίησης ενεργού υμενίου/ανόδου σε οργανικές οπτοηλεκτρονικές διατάξεις. Η παρούσα μελέτη δημιουργεί μια νέα κατηγορία υλικών που βασίζονται στο οξείδια μετάλλων μετάπτωσης με ελεγχόμενες ηλεκτρονικές και φυσικές ιδιότητες, ανοίγοντας το δρόμο για τη σύνθεση νέων οξειδίων που μπορούν να χρησιμοποιηθούν όχι μόνο ως αποτελεσματικά διεπιφανειακά υμένια σε οργανικές οπτοηλεκτρονικές διατάξεις, αλλά και σε ποικίλες εφαρμογές, όπως είναι η φωτοκατάλυση.
περισσότερα
Περίληψη σε άλλη γλώσσα
Organic Optoelectronic devices, such as Organic Light Emitting Diodes (OLEDs) and Organic Photovoltaic (OPVs), consist of one or more conjugated organic films which are sandwiched between two electrodes, a transparent that is the anode of the device and a metallic cathode. It is an unfortunate fact that the dramatic progress that has been recently achieved in materials design and manufacturing has not been matched by the equal improvement in the interface engineering and no reliable interface-design criteria are available to device manufacturers. The objective of this thesis is the investigation of interface engineering of OLEDs and OPVs using Transition Metal Oxide films, in particular Molybdenum (Mo) and Tungsten (W) oxide films. At first, the deposition of molybdenum and tungsten oxides in various conditions is investigated. It was found that not only does the reduction of metal oxides alter their stoichiometry and electronic structures, but it also influences their morphological, o ...
Organic Optoelectronic devices, such as Organic Light Emitting Diodes (OLEDs) and Organic Photovoltaic (OPVs), consist of one or more conjugated organic films which are sandwiched between two electrodes, a transparent that is the anode of the device and a metallic cathode. It is an unfortunate fact that the dramatic progress that has been recently achieved in materials design and manufacturing has not been matched by the equal improvement in the interface engineering and no reliable interface-design criteria are available to device manufacturers. The objective of this thesis is the investigation of interface engineering of OLEDs and OPVs using Transition Metal Oxide films, in particular Molybdenum (Mo) and Tungsten (W) oxide films. At first, the deposition of molybdenum and tungsten oxides in various conditions is investigated. It was found that not only does the reduction of metal oxides alter their stoichiometry and electronic structures, but it also influences their morphological, optical and electrical properties. Specifically, the introduction of under-stoichiometry in the lattice of the Mo and W oxides results in the appearance of new occupied gap states near the Fermi level, which act as favorable paths for charge transport. Furthermore, OLEDs and OPVs have been fabricated using both stoichiometric and sub-stoichiometric molybdenum and tungsten oxide films as hole injection and extraction layers, respectively. The implementation of sub-stoichiometric Mo and W oxides as anode interfacial layers in OLEDs and OPVs leads to the improvement of the device performance, compared to devices with their stoichiometric counterparts. This increase may be attributed to a favorable energy-level alignment at the anode/organic film interface, due to the formation of occupied gap states near the Fermi level, resulting in the reduction of the hole injection/extraction barrier. Finally, under-stoichiometric molybdenum and tungsten oxide films are used as anode interfacial layers in OPVs after being subjected to microwave post-deposition annealing. It is demonstrated that a short exposure of under-stoichiometric Mo and W oxides leads to a shift of the work function towards higher values resulting in the enhancement of hole extraction and the improvement of the device performance. The microwave annealing of the oxide layer can also benefit the nanomorphology/crystallization of the photoactive layer, deposited on top of them, leading to enhanced hole transport properties, and thus increasing the electrical characteristics of the OPVs. These findings demonstrate the tremendous potential of under-stoichiometric Mo and W oxides with well controlled stoichiometry, which creates an advanced class of transition metal oxide-based functional materials with tailored electronic and physical properties. In addition, they may pave the way for finding new oxide formulations that can be used not only as highly efficient charge exchange/electrode modification layers in a wide range of optoelectronic devices, but also in other diverse applications, such as in photocatalysis.
περισσότερα