Μηχανική μάθηση στην επεξεργασία φυσικής γλώσσας
Περίληψη
Η διατριβή εξετάζει την χρήση τεχνικών μηχανικής μάθησης σε διάφορα στάδια της επεξεργασίας φυσικής γλώσσας, κυρίως για σκοπούς εξαγωγής πληροφορίας από κείμενα. Στόχος είναι τόσο η βελτίωση της προσαρμοστικότητας των συστημάτων εξαγωγής πληροφορίας σε νέες θεματικές περιοχές (ή ακόμα και γλώσσες), όσο και η επίτευξη καλύτερης απόδοσης χρησιμοποιώντας όσο το δυνατό λιγότερους πόρους (τόσο γλωσσικούς όσο και ανθρώπινους). Η διατριβή κινείται σε δύο κύριους άξονες: α) την έρευνα και αποτίμηση υπαρχόντων αλγορίθμων μηχανικής μάθησης κυρίως στα στάδια της προ-επεξεργασίας (όπως η αναγνώριση μερών του λόγου) και της αναγνώρισης ονομάτων οντοτήτων, και β) τη δημιουργία ενός νέου αλγορίθμου μηχανικής μάθησης και αποτίμησής του, τόσο σε συνθετικά δεδομένα, όσο και σε πραγματικά δεδομένα από το στάδιο της εξαγωγής σχέσεων μεταξύ ονομάτων οντοτήτων. Ο νέος αλγόριθμος μηχανικής μάθησης ανήκει στην κατηγορία της επαγωγικής εξαγωγής γραμματικών, και εξάγει γραμματικές ανεξάρτητες από τα συμφραζόμεν ...
περισσότερα
Περίληψη σε άλλη γλώσσα
This thesis examines the use of machine learning techniques in various tasks of natural language processing, mainly for the task of information extraction from texts. The objectives are the improvement of adaptability of information extraction systems to new thematic domains (or even languages), and the improvement of their performance using as fewer resources (either linguistic or human) as possible. This thesis has examined two main axes: a) the research and assessment of existing algorithms of machine learning mainly in the stages of linguistic pre-processing (such as part of speech tagging) and named-entity recognition, and b) the creating of a new machine learning algorithm and its assessment on synthetic data, as well as in real world data from the task of relation extraction between named entities. This new algorithm belongs to the category of inductive grammar learning, and can inter context free grammars from positive examples only.
Κατεβάστε τη διατριβή σε μορφή PDF (2.86 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.