Περίληψη
Η κατασκευή έργων μεγάλου βεληνεκούς, όπως η κατασκευή ενός μεγάλου φράγματος, έχει σημαντικές οικονομικές και κοινωνικές συνέπειες. Αυτός είναι και ο λόγος για τον οποίο η λήψη τέτοιων αποφάσεων πρέπει να δικαιολογείται από αυστηρές και ταυτόχρονα λεπτομερείς κοινωνικοοικονομικές και επιχειρησιακές μελέτες. Όσον αφορά την επιχειρησιακή μελέτη ενός φράγματος, πρέπει να ερευνά το λόγο λειτουργίας του φράγματος, τις διαστάσεις του, τη γεωγραφική τοποθεσία της λεκάνης απορροής, τα υδρολογικά χαρακτηριστικά αυτής, καθώς επίσης και τους περιβαλλοντικούς περιορισμούς που περικλείονται στην εθνική και διεθνή νομοθεσία. Η δε κοινωνικοοικονομική μελέτη πρέπει να λαμβάνει υπόψη όλους εκείνους τους παράγοντες που εξασφαλίζουν τη βιωσιμότητα του έργου. Μέχρι και μερικά χρόνια πριν, το γεγονός ότι η χρηματοδότηση κατασκευής των περισσοτέρων φραγμάτων εξασφαλιζόταν από το δημόσιο τομέα, ο οποίος είχε και την ευθύνη λειτουργίας τους, είχε ως αποτέλεσμα η κερδοφορία καθώς και η οικονομική απόσβεση της ...
Η κατασκευή έργων μεγάλου βεληνεκούς, όπως η κατασκευή ενός μεγάλου φράγματος, έχει σημαντικές οικονομικές και κοινωνικές συνέπειες. Αυτός είναι και ο λόγος για τον οποίο η λήψη τέτοιων αποφάσεων πρέπει να δικαιολογείται από αυστηρές και ταυτόχρονα λεπτομερείς κοινωνικοοικονομικές και επιχειρησιακές μελέτες. Όσον αφορά την επιχειρησιακή μελέτη ενός φράγματος, πρέπει να ερευνά το λόγο λειτουργίας του φράγματος, τις διαστάσεις του, τη γεωγραφική τοποθεσία της λεκάνης απορροής, τα υδρολογικά χαρακτηριστικά αυτής, καθώς επίσης και τους περιβαλλοντικούς περιορισμούς που περικλείονται στην εθνική και διεθνή νομοθεσία. Η δε κοινωνικοοικονομική μελέτη πρέπει να λαμβάνει υπόψη όλους εκείνους τους παράγοντες που εξασφαλίζουν τη βιωσιμότητα του έργου. Μέχρι και μερικά χρόνια πριν, το γεγονός ότι η χρηματοδότηση κατασκευής των περισσοτέρων φραγμάτων εξασφαλιζόταν από το δημόσιο τομέα, ο οποίος είχε και την ευθύνη λειτουργίας τους, είχε ως αποτέλεσμα η κερδοφορία καθώς και η οικονομική απόσβεση της επένδυσης, αυτής καθ’ αυτής, να μην αποτελεί την ύψιστη προτεραιότητα στην απόφαση κατασκευής τους. Στις μέρες μας, η απελευθέρωση της αγοράς ενέργειας στον αναπτυγμένο κόσμο έχει και ως επακόλουθο την ιδιωτικοποίηση των ενεργειακών υποδομών καθώς και την θέσπιση νέων οικονομικών δεδομένων σχετικά με τη χρηματοδότηση και διαχείριση ενεργειακών έργων όπως τα φράγματα. Άρα, η απόφαση για επένδυση προϋποθέτει την αξιολόγηση της βιωσιμότητας και της κερδοφορίας του έργου καθ’ όλο τον κύκλο ζωής του, ο οποίος στην περίπτωση των φραγμάτων είναι 50 έτη, και βασίζεται σε συγκεκριμένα ποσοτικά κριτήρια αξιολόγησης, όπως η Καθαρή Παρούσα Αξία (Net Present Value – NPV). Παρόλα αυτά, δεδομένου ότι η κινητήρια δύναμη ενός υδροηλεκτρικού εργοστασίου είναι το νερό, η λειτουργία του έρχεται σε αντίθεση με τη διαχείριση των υδατικών πόρων της λεκάνης απορροής στην οποία βρίσκεται. Για αυτό το σκοπό θεσπίστηκαν πρόσφατα από την Ευρωπαϊκή Ένωση νέες πρακτικές και κανονισμοί, όπως η Οδηγία Πλαίσιο για τα Ύδατα (Water Framework Directive – WFD), οι οποίοι ορίζουν συγκεκριμένες κατευθυντήριες γραμμές σχετικά με τις κοινωνικές και περιβαλλοντικές επιπτώσεις των έργων υδατικών πόρων, έτσι ώστε να επιτυγχάνεται η βιωσιμότητα σε συνθήκεςκλιματικής αλλαγής Η παρούσα διατριβήέχει ωςστόχο τη διερεύνηση τηςσύζευξηςμαθηματικών μοντέλων υδρολογίας υδροηλεκτρικήςλειτουργίας κλιματικήςαλλαγήςκαι οικονομικών μοντέλων, προκειμένου να προτείνει τρόπουςλήψηςισορροπημένων αποφάσεων σε περιπτώσειςέργων υδατικών πόρων. Λαμβάνει δε υπόψη, τόσο τιςαπαιτήσειςτων κριτηρίων που διέπουν ένα επενδυτικόσχέδιο, όσο και την κοινωνικήευημερία και τιςορθολογικότερες πρακτικέςδιαχείρισηςμιαςλεκάνηςαπορροής Η προτεινόμενη μεθοδολογία εφαρμόζεται στο μελλοντικόυδροηλεκτρικόαρδευτικόφράγμα του Τεμένουςστη λεκάνη απορροήςτου ποταμούΜέστα/Νέστου. Η λεκάνη του ποταμούμοιράζεται μεταξύτηςΒουλγαρίας η οποία είναι η ανάντη χώρα, και τηςΕλλάδαςη οποία είναι η κατάντη χώρα. Ο ποταμόςλίγο πριν την εκροήτου στο Αιγαίο Πέλαγοςδημιουργείτο δέλτα του Νέστου το οποίο αποτελείμια σημαντικήγια την Ελλάδα γεωργικήπεριοχή αποτελούμενη απόαρδευόμενεςκαλλιέργειες
περισσότερα
Περίληψη σε άλλη γλώσσα
The construction of a large dam is a project of important economic and social consequences and this is the reason why it should be preceded by a careful socio-economic and operational study. On one hand, the operational investigation should take into account the dam’s dimensions and purpose, the location of its watershed and its hydrology characteristics as well as environmental contraints due to international and national legislation. On the other hand, the socio-economic study should take into account all the variables which ensure the sustainability of the project. Until a few years ago, the vast majority of dams were funded and consequently owned by the public sector, thus project profitability was not of highest priority in the decision of their construction. Nowadays, the liberalisation of the electricity market in the developed world has led to the privatisation of energy infrastructures and has set new economic standards in the funding and management of dam projects. The invest ...
The construction of a large dam is a project of important economic and social consequences and this is the reason why it should be preceded by a careful socio-economic and operational study. On one hand, the operational investigation should take into account the dam’s dimensions and purpose, the location of its watershed and its hydrology characteristics as well as environmental contraints due to international and national legislation. On the other hand, the socio-economic study should take into account all the variables which ensure the sustainability of the project. Until a few years ago, the vast majority of dams were funded and consequently owned by the public sector, thus project profitability was not of highest priority in the decision of their construction. Nowadays, the liberalisation of the electricity market in the developed world has led to the privatisation of energy infrastructures and has set new economic standards in the funding and management of dam projects. The investment decision is based on an evaluation of viability and profitability over the full life cycle of the project, typically 50 years, on the basis of quantitative criteria such as the Net Present Value (NPV). Since the fuel of a hydropower plant is water, its operation interferes with the water resources management of the river basin where it is situated. To this respect, new practices and regulations have recently developed such as the EU Water Framework Directive (WFD). They constrain any water resources project into following guidelines regarding its social and environmental impacts in accordance with long term issues such as its sustainability under climate change conditions. The present work aims at exploring the coupling of mathematical models of hydrology, hydropower operation, climate change and economics in order to propose ways of making balanced decisions merging the demands of project investment criteria, public well being and river basin management best practices. It is illustrated by the investigation of the new hydropower and irrigation project of Temenos in the Mesta/Nestos river basin. This basin is shared between Bulgaria in its upstream northern part and Greece for its downstream part. The river ends in Aegean Sea after expanding into the Nestos delta which is occupied by a vast expanse of irrigated fields. Currently, two hydroelectric power plants are located in the mountainous part of the Nestos basin: the Thissavros plant with a reservoir capacity of 565 million m3 and further downstream, the Platanovryssi dam with a reservoir capacity of 11 million m3. Both dams have been designed to operate in pump-storage mode for electricity generation. The future Temenos project is planned to be financed exclusively with private funds. Situated downstream from the previous dams, it is designed for electricity production, irrigation regulation, and should contribute to the improvement of the power produced by the existing complex. The climate change scenarios developed by the Intergovernmental Panel of Climate Change (IPCC) with the publication of the Special Report on Emissions Scenarios (SRES) reveal possible future climate modifications at global scale. More specifically, according to the output of the several global circulation models (GCM), the global average surface temperature is predicted to increase by 1.4 to 5.8°C over the period 1990 to 2100. These temperature increases should drive evaporation rate increases and precipitation fluctuations. Consequently, a severe impact could result upon hydropower generation as it is sensitive to the amount, timing, and geographical pattern of precipitation as well as temperature.
περισσότερα