Εξόρυξη γνώσης από χρονοσειρές: βελτιώσεις σε τεχνικές αναπαράστασης, μέτρησης αποστάσεων και αναζήτησης ομοιότητας σε μονομεταβλητές και πολυμεταβλητές χρονοσειρές
Περίληψη σε άλλη γλώσσα
In this dissertation, we investigate various techniques for efficiently applying Time Series Data Mining methods in very large databases. The main tasks of these methods are: clustering, classification, novelty detection, motif discovery and rule discovery. At the core of these tasks lies the concept of similarity, since most of them require searching for similar patterns. The temporal nature of data arises two special issues to be considered in the process of similarity search. The first one is the definition of an appropriate similarity measure that allows imprecise matches among time series. The second issue is the representation of time series in order to reduce the intrinsically high dimensionality present in this type of data. Our research focuses on univariate, as well as, on multivariate time series. In the first case, similarity is sought among one-dimensional time series, whereas in the latter case, similarity is sought among objects, which consist of a set of time series. Th ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (1.35 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.