Ευφυές σύστημα για τη βέλτιστη διαχείριση αποθεμάτων βασισμένο σε αλγορίθμους μηχανικής μάθησης και μεταφοράς γνώσης

Περίληψη

Οι αλγόριθμοι μηχανικής μάθησης έχουν δείξει μεγάλες δυνατότητες σε διάφορους τομείς, αλλά η εμφάνισή τους στη βελτιστοποίηση των ρυθμίσεων διαχείρισης αποθεμάτων, που αποτελεί σημαντικό μέρος μιας εφοδιαστικής αλυσίδας, και πρωταρχικής σημασίας για τις εταιρείες λιανικής, παραμένει περιορισμένη. Αντικείμενο της παρούσας διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος βελτιστοποίησης των πολιτικών αποθεματοποίησης μέσω της ελαχιστοποίησης του συνολικού κόστους αποθεματοποίησης, το οποίο εκμεταλλεύεται προηγμένα μοντέλα μηχανικής μάθησης, που βασίζονται σε δέντρα αποφάσεων, προκειμένου να προσεγγίσει τις επιμέρους συνιστώσες που επηρεάζουν άμεσα το συνολικό κόστος σε επίπεδο προϊόντος. Τα μοντέλα μηχανικής μάθησης, έτσι, δύνανται να προσεγγίσουν αυτές τις επιμέρους συνιστώσες λαμβάνοντας ως εισόδους τα μοτίβα εμφάνισης της ζήτησης, δηλαδή τα χαρακτηριστικά των χρονοσειρών που αναπαριστούν τη ζήτηση, και τις βασικές παραμέτρους της πολιτικής αποθεματοποίησης που χρησιμοποιείται. ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Inventory policy optimization is a critical component of supply chain management. Well planned inventory management can boost operational efficiency and profitability, allowing businesses to meet customer demands while reducing costs. Machine learning algorithms have shown great promise in a variety of domains, including supply chain, in recent years. However, the application of machine learning in the field of inventory policy optimization has been rather limited, with organizations frequently relying on standard simulations to inform their decisions. To address this gap, this dissertation creates a novel inventory cost minimization framework based on advanced decision-tree based machine learning models. The proposed approach approximates inventory performance at the item level while taking key replenishment policy parameters and demand patterns into account. Several advantages of the proposed approach over traditional inventory simulations include flexibility, adaptability and the ab ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/53758
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/53758
ND
53758
Εναλλακτικός τίτλος
Intelligent system for optimal inventory management utilizing machine learning algorithms and transfer learning
Συγγραφέας
Θεοδώρου, Ευάγγελος (Πατρώνυμο: Μάριος)
Ημερομηνία
2023
Ίδρυμα
Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων. Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Εξεταστική επιτροπή
Ασημακόπουλος Βασίλειος
Ψαρράς Ιωάννης
Ασκούνης Δημήτριος
Μέντζας Γρηγόριος
Δούκας Χρυσόστομος
Μαρινάκης Ευάγγελος
Μεταξιώτης Κωνσταντίνος
Επιστημονικό πεδίο
Επιστήμες Μηχανικού και ΤεχνολογίαΆλλες Επιστήμες Μηχανικού και Τεχνολογίες ➨ Οργάνωση παραγωγής και Μηχανική των κατεργασιών
Επιστήμες Μηχανικού και ΤεχνολογίαΕπιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ ➨ Υπολογιστές, Υλικό (hardware) και Αρχιτεκτονική
Λέξεις-κλειδιά
Διαχείριση αποθεμάτων; Μηχανική μάθηση; Ανάλυση χρονοσειρών; Βελτιστοποίηση
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.