Περίληψη
Με τους ρυθμούς ανάπτυξη της τεχνολογίας σήμερα, τα Απόβλητα ειδών Ηλεκτρικού & Ηλεκτρονικού Εξοπλισμού (ΑHHE) η waste electrical and electronic equipment (WEEE) συνεχώς αυξάνονται ενώ οι τεχνολογίες διαχείρισης και ανάκτησης υλικών πρέπει να βελτιώνονται προκειμένου να συναντήσουν τα αυστηρά κριτήρια που έχει θέσει η ευρωπαϊκή νομοθεσία. Η πυρόλυση και γενικά οι θερμοχημικές διεργασίες θα μπορούσαν να αποτελέσουν μια βιώσιμη λύση για περαιτέρω ανάκτηση των υλικών αλλά και για αξιοποίησης του ενεργειακού τους περιεχομένου.Η πυρόλυσή αλλά και άλλες προκατεργασίες έχουν μελετηθεί πειραματικά με στόχο την παραγωγή ενέργειας, τον διαχωρισμό των μετάλλων και την ανάκτηση του οργανικούπεριεχομένου των ΑΗΗΕ. Μερικά από τα πιο σημαντικά κλάσματα των ΑΗΗΕ έχουν εξεταστεί με βάση τους περιορισμούς που μπορεί να προκαλέσουν στην διεργασία.Αρχικά, η έρευνα επικεντρώθηκε στα πρωτογενή προϊόντα της πυρόλυσης, αποκαλύπτοντας τους περιβαλλοντικούς ρύπους καθώς και τα παραγόμενα μονομερή πουμπορούν να ...
Με τους ρυθμούς ανάπτυξη της τεχνολογίας σήμερα, τα Απόβλητα ειδών Ηλεκτρικού & Ηλεκτρονικού Εξοπλισμού (ΑHHE) η waste electrical and electronic equipment (WEEE) συνεχώς αυξάνονται ενώ οι τεχνολογίες διαχείρισης και ανάκτησης υλικών πρέπει να βελτιώνονται προκειμένου να συναντήσουν τα αυστηρά κριτήρια που έχει θέσει η ευρωπαϊκή νομοθεσία. Η πυρόλυση και γενικά οι θερμοχημικές διεργασίες θα μπορούσαν να αποτελέσουν μια βιώσιμη λύση για περαιτέρω ανάκτηση των υλικών αλλά και για αξιοποίησης του ενεργειακού τους περιεχομένου.Η πυρόλυσή αλλά και άλλες προκατεργασίες έχουν μελετηθεί πειραματικά με στόχο την παραγωγή ενέργειας, τον διαχωρισμό των μετάλλων και την ανάκτηση του οργανικούπεριεχομένου των ΑΗΗΕ. Μερικά από τα πιο σημαντικά κλάσματα των ΑΗΗΕ έχουν εξεταστεί με βάση τους περιορισμούς που μπορεί να προκαλέσουν στην διεργασία.Αρχικά, η έρευνα επικεντρώθηκε στα πρωτογενή προϊόντα της πυρόλυσης, αποκαλύπτοντας τους περιβαλλοντικούς ρύπους καθώς και τα παραγόμενα μονομερή πουμπορούν να χρησιμοποιηθούν για την ανακύκλωση πρώτων υλών. Έγινε συσχέτιση της τελικής θερμοκρασίας της διεργασίας με την παραγωγή των κυριότερων προϊόντων.Επιπλέον, προτάθηκε ένας μηχανισμός αντίδρασης της αποσύνθεσης της δισφαινόλης Α με βάση τα προϊόντα της διεργασίας. Στη συνέχεια, η μείωση της περιεκτικότητας σε βρώμιο του αρχικού κλάσματος ΑΗΕΕ επιτεύχθηκε με προκατεργασία εκχύλισης με διαλύτη. Η ισοπροπανόλη και το τολουόλιο δοκιμάστηκαν ως διαλύτες ικανές να απομακρύνουν ένα από τα κύρια επιβραδυντικά φλόγας σε κλάσματα WEEE, την Τετραβρωμο-δισφαινόλη Α. Τα αποτελέσματα δείχνουν ότι η μείωση του βρωμίου διεξήχθη επιτυχώς ακόμη και στο ~ 37%. Αυτό το αποτέλεσμα επιβεβαιώθηκε περαιτέρω από τη μείωση ή την ολική απομάκρυνση βρωμιωμένων ειδών στα προϊόντα πυρόλυσης. Το τολουόλιο φαίνεται να αποτελεί την πιο πολύτιμη επιλογήγια την προεπεξεργασία, δεδομένου ότι μπορεί να παρασχεθεί από την ίδια τη διαδικασία πυρόλυσης, καθιστώντας όλη την επεξεργασία βιώσιμη.Η υψηλή περιεκτικότητα σε υγρασία που προέρχεται από διαχωριστές πυκνότητας διερευνήθηκε επίσης ως ένας άλλος σημαντικός περιοριστικός παράγοντας τηςανακύκλωσης των ΑΗΗΕ μέσω της πυρόλυσης. Τα ΑΗΗΕ πυρολύθηκαν σε ατμόσφαιρα αζώτου και ατμού και αξιολογήθηκε η αποσύνθεση τους. Ο ατμός έδειξε αρνητικήεπίδραση στα προϊόντα, καθώς ανιχνεύθηκαν αρκετά προϊόντα υψηλού μοριακού βάρους, αποκαλύπτοντας ότι ο ατμός περιόριζε τις δευτερογενείς αντιδράσεις πυρόλυσης.Επιπλέον, τα αποτελέσματα δείχνουν ότι η παρουσία ατμού περιπλέκει τον διαχωρισμό των ελαίων και ευνοεί τη μετανάστευση του αντιμονίου στην αέρια φάση. Επομένως, έναστάδιο ξήρανσης πριν από τη χρήση πυρόλυσης για αυτό το κλάσμα είναι απολύτως απαραίτητο.Πυρόλυση χαμηλής θερμοκρασίας διερευνήθηκε επίσης για να γίνει το ΑΗΗΕ πιο εύθραυστο για την βελτίωση του διαχωρισμού μετάλλων από το οργανικό ανθρακούχοστερεό υπόλειμμα. Τα αποτελέσματα δείχνουν ότι ο διαχωρισμός είναι εφικτός σε χαμηλές θερμοκρασίες για ελαχιστοποίηση της ενεργειακής κατανάλωσης της διεργασίας αλλάτουλάχιστον κατά 40° υψηλότερη από τη θερμοκρασία εκκίνησης του επιλεγμένου υλικού. Ο διαχωρισμός αξιολογήθηκε επίσης με κλασμάτωση του στερεού υπολείμματος, αποκαλύπτοντας ότι το παραγόμενο χωρίς βρώμιο στερεό ανθρακούχο υλικό μπορεί περαιτέρω να χρησιμοποιηθεί για παραγωγή ενέργειας. Τέλος, ολόκληρη η διεργασία δοκιμάστηκε σε συνεχή κυλινδικού περιστρεφόμενου αντιδραστήρα για συνολική αξιολόγηση της διαδικασίας. Τα αποτελέσματα δείχνουν ότιτα υγρά προϊόντα πυρόλυσης μπορούν να χρησιμοποιηθούν για ανακύκλωση πρώτων υλών, δημιουργώντας τις απαραίτητες οργανικές ενώσεις που μπορούν ναχρησιμοποιηθούν για την κατασκευή νέων πλαστικών ή μπορούν να χρησιμοποιηθούν ως υγρό καύσιμο. Οι βρωμιωμένες ενώσεις τείνουν να μεταναστεύουν στην αέρια φάση,καθώς η θερμοκρασία της μεθόδου αυξάνεται καθιστώντας ευκολότερη την ανακύκλωση μετάλλων από το στερεό υπόλειμμα. Η διαδικασία γενικά μπορεί να είναιαυτοσυντηρούμενη αφού η ενέργεια που απαιτείται για να θερμανθεί το σύστημα μπορεί να καλυφθεί από την παραγωγή του αερίου επεξεργασίας.
περισσότερα
Περίληψη σε άλλη γλώσσα
The trends in waste electrical and electronic equipment (WEEE) generation shows that their volume constantly increases, while the current waste management technologieshave proven to be insufficient in order to meet the strict criteria and the new legislations of the European Union. Pyrolysis and thermal treatment in general could be a valuablesolution for closing the loop of materials and could contribute to the energy demands of modern society.Pyrolysis as a process and combination of other pre-treatment techniques was investigated with a focus on energy production, metal separation and feedstock recycling.In this work, several fractions of real WEEE have been tested based on the process requirements and the focus of each individual study.Firstly, the investigation was focused on the primary products of the process, revealing most of the environmental pollutants as well as the valuable monomers that canenhance feedstock recycling. A correlation of the process’ final temperature with t ...
The trends in waste electrical and electronic equipment (WEEE) generation shows that their volume constantly increases, while the current waste management technologieshave proven to be insufficient in order to meet the strict criteria and the new legislations of the European Union. Pyrolysis and thermal treatment in general could be a valuablesolution for closing the loop of materials and could contribute to the energy demands of modern society.Pyrolysis as a process and combination of other pre-treatment techniques was investigated with a focus on energy production, metal separation and feedstock recycling.In this work, several fractions of real WEEE have been tested based on the process requirements and the focus of each individual study.Firstly, the investigation was focused on the primary products of the process, revealing most of the environmental pollutants as well as the valuable monomers that canenhance feedstock recycling. A correlation of the process’ final temperature with the evolution of the major products was performed. Moreover, a conceptual reaction mechanism of Bisphenol A decomposition was suggested based on the process products. Then, a reduction of the bromine content of the initial WEEE fraction was achieved by solvent extraction pre-treatment. Isopropanol and toluene were tested as solvents capable of removing one of the main flame retardants at WEEE fractions, Tetrabromobisphenol A.The results indicate that the reduction of bromine was successfully performed even at ~37%. This result was further confirmed by the reduction or total removal of brominated speciesin the pyrolysis products. The toluene seems to be a valuable option for the pre-treatment, since it can be provided by the pyrolysis process itself, making the entire treatment moresustainable and in accordance with the concept of circular economy. Density separators used in the sorting of WEEE materials usually produced high moisture content fractions. As soon as those fractions follow thermal treatment, the moisture will eventually become steam, which influences the process. Therefore, WEEE materials were pyrolysed in nitrogen and steam atmospheres and their decomposition was evaluated. Steam had a negative impact on the products, since several high molecular weight products were detected, revealing that steam limits secondary cracking reactions. Additionally, the results show that the presence of steam complicates the separation of oils and favours the migration of antimony to the gas phase. Therefore, a drying step before using pyrolysis for this fraction is necessary. Low temperature pyrolysis was also investigated for making the WEEE more fragile to enhance metal separation from the carbonised solid residue while the fate of bromine was also monitored. The results indicate that the separation is possible at low temperatures for minimising the energy consumption of the process but it should be at least 40 ° higher than the onset temperature of the selected material. The separation was also evaluated with fractionation of the solid residue, revealing that the produced bromine-free solid carbonised material can be further utilised for energy production.Finally, the entire process was tested in a continuous screw reactor for overall process evaluation. The results indicate that the liquid products of pyrolysis can be used forfeedstock recycling, producing necessary organic compounds that can be used for manufacturing new plastics or can be used as liquid fuel. The brominated compounds tendto migrate to the gas phase, as the temperature of the process increases, making the recycling of metals from the solid residue easier. The process in general can be selfsustained since the energy needed for the system to heat up can be covered from its gas production.
περισσότερα