Περίληψη
Στη διατριβή αυτή διερευνάται και επιλύεται σειρά προβλημάτων μέσω της ανάπτυξης εξελιγμένων προσομοιωμάτων ευθύγραμμης και καμπύλης δοκού. Πιο συγκεκριμένα, αντιμετωπίζονται τα προβλήματα ανομοιόμορφης στρέψης, γενικευμένης στρέβλωσης λόγω διάτμησης και στρέψης (μέσω των οποίων μελετάται το φαινόμενο της διατμητικής υστέρησης), διαστρέβλωσης (παραμόρφωση των διατομών της δοκού στο επίπεδό τους) καθώς και το πρόβλημα της δυναμικής ανάλυσης ευθύγραμμων και καμπύλων δοκών. Η αντιμετώπιση των προβλημάτων αυτών βασίζεται στη γενικευμένη διατύπωση καινοτόμων θεωριών δοκού (Generalized Beam Theories - GBT), με τις οποίες το πεδίο μετατοπίσεων και οι συνιστώσες των τανυστών παραμόρφωσης και τάσης διατυπώνονται ως γραμμικοί συνδυασμοί γινομένων μονοδιάστατων και διδιάστατων συναρτήσεων.Η αναλυτική λύση των μονοδιάστατων και διδιάστατων προβλημάτων συνοριακών και αρχικών-συνοριακών τιμών που μορφώνονται εν γένει δεν είναι εφικτή. Ως εκ τούτου, τα προβλήματα αυτά επιλύονται αριθμητικά εφαρμόζ ...
Στη διατριβή αυτή διερευνάται και επιλύεται σειρά προβλημάτων μέσω της ανάπτυξης εξελιγμένων προσομοιωμάτων ευθύγραμμης και καμπύλης δοκού. Πιο συγκεκριμένα, αντιμετωπίζονται τα προβλήματα ανομοιόμορφης στρέψης, γενικευμένης στρέβλωσης λόγω διάτμησης και στρέψης (μέσω των οποίων μελετάται το φαινόμενο της διατμητικής υστέρησης), διαστρέβλωσης (παραμόρφωση των διατομών της δοκού στο επίπεδό τους) καθώς και το πρόβλημα της δυναμικής ανάλυσης ευθύγραμμων και καμπύλων δοκών. Η αντιμετώπιση των προβλημάτων αυτών βασίζεται στη γενικευμένη διατύπωση καινοτόμων θεωριών δοκού (Generalized Beam Theories - GBT), με τις οποίες το πεδίο μετατοπίσεων και οι συνιστώσες των τανυστών παραμόρφωσης και τάσης διατυπώνονται ως γραμμικοί συνδυασμοί γινομένων μονοδιάστατων και διδιάστατων συναρτήσεων.Η αναλυτική λύση των μονοδιάστατων και διδιάστατων προβλημάτων συνοριακών και αρχικών-συνοριακών τιμών που μορφώνονται εν γένει δεν είναι εφικτή. Ως εκ τούτου, τα προβλήματα αυτά επιλύονται αριθμητικά εφαρμόζοντας τη Μέθοδο Συνοριακών Στοιχείων (Boundary Element Method - BEM), τη Μέθοδο Αναλογικής Εξίσωσης (Analog Equation Method - AEM), η οποία αποτελεί εξέλιξη της BEM, καθώς και τη Μέθοδο Πεπερασμένων Στοιχείων (Finite Element Method - FEM). Όσον αφορά στην επίλυση μονοδιάστατων προβλημάτων, οι αριθμητικές μέθοδοι που χρησιμοποιoύνται (AEM και FEM) συνδυάζονται με εργαλεία της Ισογεωμετρικής Ανάλυσης (Isogeometric Analysis - IGA) ώστε να επιτευχθεί μία προσέγγιση με χαμηλότερο υπολογιστικό κόστος καθώς και πιο διαδραστική μεταξύ ανάλυσης και γεωμετρίας που θα επιτυγχάνει πιο αξιόπιστα αποτελέσματα περιορίζοντας το σφάλμα που πηγάζει από την προσέγγιση της γεωμετρίας. Συγκεκριμένα, οι παραμετρικές καμπύλες B-splines και NURBS (Non-Uniform Rational B-Splines) που έχουν υιοθετήσει τα λογισμικά πακέτα μοντελοποίησης με υπολογιστή (Computer-Aided Design - CAD) εφαρμόζονται στην παρούσα διατριβή. Με βάση τις αναπτυχθείσες αναλυτικές και αριθμητικές διαδικασίες συντάσσονται καινοτόμα προγράμματα ηλεκτρονικού υπολογιστή για την ανάλυση τρισδιάστατων ευθύγραμμων και καμπυλόγραμμων ραβδωτών φορέων. Κάθε κύριο κεφάλαιο της διατριβής αποτελείται από την εισαγωγή, τη διατύπωση του προβλήματος, την αριθμητική επίλυση, αντιπροσωπευτικά αριθμητικά παραδείγματα και τα συμπεράσματα. Στην εισαγωγή κάθε κύριου κεφαλαίου περιέχεται η βιβλιογραφική επισκόπηση του ερευνητικού έργου (State of the Art) του αντίστοιχου εξεταζόμενου προβλήματος και παρουσιάζονται τα πρωτότυπα σχετικά στοιχεία της εργασίας. Τέλος, στο τελικό κεφάλαιο παρουσιάζονται τα συμπεράσματα και προτάσεις για μελλοντική έρευνα.
περισσότερα
Περίληψη σε άλλη γλώσσα
The present doctoral thesis is organized in seven chapters and two appendices. Each one of the chapters 2 to 6 consists of an introduction containing the necessary literature review of the corresponding problem, the statement of the problem, the numerical solution, a number of representative numerical examples and finally some concluding remarks. In the final chapter, the main conclusions drawn within the present doctoral thesis are summarized, while suggestions and goals for future research are proposed. In Chapter 2, the Analog Equation Method (AEM), a boundary element based method, is employed for the nonuniform torsional problem of bars of arbitrary constant cross section, considering a quadratic B-spline approximation for the fictitious loads of a substitute problem. In addition to this, refinement procedures have been employed in some of the numerical examples in order to investigate their efficiency in increasing accuracy. In Chapter 3, the AEM, a boundary element based method, ...
The present doctoral thesis is organized in seven chapters and two appendices. Each one of the chapters 2 to 6 consists of an introduction containing the necessary literature review of the corresponding problem, the statement of the problem, the numerical solution, a number of representative numerical examples and finally some concluding remarks. In the final chapter, the main conclusions drawn within the present doctoral thesis are summarized, while suggestions and goals for future research are proposed. In Chapter 2, the Analog Equation Method (AEM), a boundary element based method, is employed for the nonuniform torsional problem of bars of arbitrary constant cross section, considering a quadratic B-spline approximation for the fictitious loads of a substitute problem. In addition to this, refinement procedures have been employed in some of the numerical examples in order to investigate their efficiency in increasing accuracy. In Chapter 3, the AEM, a boundary element based method, is employed for the analysis of a homogenous beam element of arbitrary cross section (thin- or thick- walled) taking into account nonuniform warping and shear deformation effects (shear lag due to both flexure and torsion), considering B-splines for the approximation of the fictitious loads. The Isogeometric tools, either integrated in Finite Element Method (FEM) or AEM, are employed for the vibration analysis of this element, too. In Chapter 4, the static and dynamic generalized warping problem of horizontally curved beams of arbitrary cross section, loading and boundary conditions is presented. The proposed beam element possesses ten degrees of freedom (DOFs) per node in order to account for out-of-plane nonuniform warping due to both flexure and torsion (shear lag due to both flexure and torsion). In Chapter 5, the static and vibration analysis of straight or horizontally curved beams of arbitrary cross section, loading and boundary conditions including generalized cross sectional warping and distortional effects due to both flexure and torsion is presented. The aim of this Chapter is to propose a new formulation by enriching the beam’s kinematics both with out-of- and in-plane deformation modes and, thus, take into account both cross section’s warping and distortion in the final 1D analysis of curved members, towards developing GBT further for curved geometries while employing independent warping parameters, which are commonly used in Higher Order Beam Theories (HOBT). In Chapter 6, the beam formulations presented in Chapters 4 and 5 are employed together with design guidelines which specify the maximum spacing of intermediate diaphragms in order to prevent from excessive distortional effects in cross section’s plane. In Chapter 7, the main conclusions drawn in this doctoral thesis are summarized and the key features and novelties of the developed formulations are highlighted. Moreover, directions for further research are suggested.
περισσότερα