Κυκλωσιμότητα: συνδυαστικές ιδιότητες, αλγόριθμοι και πολυπλοκότητα

Περίληψη

Ένα γράφημα G καλείται k-κυκλώσιμο, αν για κάθε k από τις κορυφές του υπάρχει ένας κύκλος στο G που τις περιέχει. Η κυκλωσιμότητα ενός γραφήματος G είναι ο μέγιστος ακέραιος k για τον οποίο το G είναι k-κυκλώσιμο και είναι μία παράμετρος που σχετίζεται με τη συνεκτικότητα. Σε αυτή τη διδακτορική διατριβή μελετάμε, κυρίως από τη σκοπιά της Παραμετρικής Πολυπλοκότητας, το πρόβλημα ΚΥΚΛΩΣΙΜΟΤΗΤΑ: Δεδομένου ενός γραφήματος G = (V,E) και ενός μη αρνητικού ακεραίου k (η παράμετρος), να αποφασιστεί αν η κυκλωσιμότητα του G είναι ίση με k.Το πρώτο μας αποτέλεσμα είναι αρνητικό και δείχνει ότι η ύπαρξη ενός FPT-αλγορίθμου για την επίλυση του προβλήματος ΚΥΚΛΩΣΙΜΟΤΗΤΑ είναι απίθανη (εκτός αν FPT = co-W[1], το οποίο θεωρείται απίθανο). Πιο συγκεκριμένα, αποδεικνύουμε ότι το πρόβλημα ΚΥΚΛΩΣΙΜΟΤΗΤΑ είναι co-W[1]-δύσκολο, ακόμα και αν περιορίσουμε την είσοδο στο να είναι χωριζόμενο γράφημα.Από την άλλη, δίνουμε έναν FPT-αλγόριθμο για το ίδιο πρόβλημα περιορισμένο στην κλάση των επίπεδων γραφημάτων. ...
περισσότερα

Περίληψη σε άλλη γλώσσα

A graph G is called k-cyclable, if for every k of its vertices there exists a cycle in G that contains them. The cyclability of G is the maximum integer k for which G is k-cyclable and it is a connectivity related graph parameter. In this doctoral thesis we study, mainly from the Parameterized Complexity point of view, the Cyclability problem: Given a graph G = (V,E) and an integer k (the parameter), decide whether the cyclability of G is equal to k. Our first result is a negative one and shows that the existence of an FPT-algorithm for solving Cyclability is unlikely (unless FPT = co-W[1], which is considered unlikely). More specifically, we prove that Cyclability is co-W[1]-hard, even if we restrict the input to be a split graph. On the other hand, we give an FPT-algorithm for the same problem when restricted to the class of planar graphs. To do this, we prove a series of combinatorial results regarding cyclability and apply a two-step version of the so called irrelevant vertex techn ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/43502
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/43502
ND
43502
Εναλλακτικός τίτλος
Cyclability: combinatorial properties, algorithms and complexity
Συγγραφέας
Μανιάτης, Σπυρίδων (Πατρώνυμο: Παναγιώτης)
Ημερομηνία
2018
Ίδρυμα
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών. Τομέας Μαθηματικής Ανάλυσης
Εξεταστική επιτροπή
Θηλυκός Δημήτριος
Κυρούσης Ελευθέριος
Κολιόπουλος Σταύρος
Αθανασιάδης Χρήστος
Δρακόπουλος Μιχαήλ
Μούρτος Ιωάννης
Ράπτης Ευάγγελος
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΜαθηματικά
Λέξεις-κλειδιά
Κυκλωσιμότητα; Παραμετρική πολυπλοκότητα; Πυρήνας; Δεσμώσεις
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
10, vi,137 σ., σχημ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.