Περίληψη
Στην παρούσα Διδακτορική Διατριβή παρουσιάζεται η διερεύνηση των δυνατοτήτων συμβολής μεθόδων μη-καταστρεπτικού ελέγχου στη διάγνωση και στον έλεγχο ποιότητας δομικών υλικών με έμφαση στην Αειφόρο Κατασκευή. Ως προς το παραπάνω σκοπό, πραγματοποιήθηκε εκτενής μελέτη των υπό έρευνα δομικών υλικών (δοκιμίων σκυροδεμάτων 5 συνθέσεων, έκαστη σύνθεση αποτελούμενη από διαφορετικό τύπο, ποιότητα και κατηγορία αντοχών του περιεχόμενου τσιμέντου) μέσω τόσο συμβατικών/παραδοσιακών (καταστρεπτικών) τεχνικών ανάλυσης όσο και καινοτόμων μη-καταστρεπτικών τεχνικών χαρακτηρισμού.Η μέθοδος που αναπτύχθηκε στα πλαίσια της παρούσας Διδακτορικής Διατριβής αφορά την συνδυαστική και συνεργατική εφαρμογή των μη-καταστρεπτικών τεχνικών της Μικροσκοπίας Οπτικών Ινών και της Ψηφιακής Επεξεργασίας Εικόνας. Περισσότερο συγκεκριμένα, παρασκευάσθηκαν δοκίμια σκυροδεμάτων στον ξυλότυπο (“καλούπι”) των οποίων είχε προσαρμοστεί κατάλληλο πλαίσιο (“παράθυρο”) παρατήρησης και λήψης εικόνων μέσω του οποίου εφαρμόστηκε Μ ...
Στην παρούσα Διδακτορική Διατριβή παρουσιάζεται η διερεύνηση των δυνατοτήτων συμβολής μεθόδων μη-καταστρεπτικού ελέγχου στη διάγνωση και στον έλεγχο ποιότητας δομικών υλικών με έμφαση στην Αειφόρο Κατασκευή. Ως προς το παραπάνω σκοπό, πραγματοποιήθηκε εκτενής μελέτη των υπό έρευνα δομικών υλικών (δοκιμίων σκυροδεμάτων 5 συνθέσεων, έκαστη σύνθεση αποτελούμενη από διαφορετικό τύπο, ποιότητα και κατηγορία αντοχών του περιεχόμενου τσιμέντου) μέσω τόσο συμβατικών/παραδοσιακών (καταστρεπτικών) τεχνικών ανάλυσης όσο και καινοτόμων μη-καταστρεπτικών τεχνικών χαρακτηρισμού.Η μέθοδος που αναπτύχθηκε στα πλαίσια της παρούσας Διδακτορικής Διατριβής αφορά την συνδυαστική και συνεργατική εφαρμογή των μη-καταστρεπτικών τεχνικών της Μικροσκοπίας Οπτικών Ινών και της Ψηφιακής Επεξεργασίας Εικόνας. Περισσότερο συγκεκριμένα, παρασκευάσθηκαν δοκίμια σκυροδεμάτων στον ξυλότυπο (“καλούπι”) των οποίων είχε προσαρμοστεί κατάλληλο πλαίσιο (“παράθυρο”) παρατήρησης και λήψης εικόνων μέσω του οποίου εφαρμόστηκε Μικροσκοπία Οπτικών Ινών σε τακτά διαστήματα πραγματικού χρόνου (“real-time”) κατά την διάρκεια της τοποθέτησης/σκυροδέτησης αυτών. Εν συνεχεία, οι εικόνες υφής αυτές επεξεργάστηκαν κατάλληλα μέσω αλγορίθμου Ψηφιακής Επεξεργασίας Εικόνας (ο οποίος αναπτύχθηκε και αριστοποιήθηκε για τις ανάγκες της συγκεκριμένης Έρευνας και εφαρμογής) σε υπολογιστικό περιβάλλον MatLab®, και εξήχθησαν ποσοτικές πληροφορίες χαρακτηρισμού της δεδομένης εικόνας ανά χρονική στιγμή λήψης αυτής.Τα πειραματικά αποτελέσματα αυτά τροφοδοτήθηκαν αυτομάτως (και σε πραγματικό χρόνο - “real-time”) σε κατάλληλη πληροφοριακή γνωσιακή βάση δεδομένων, η οποία αποτέλεσε το έναυσμα για περαιτέρω αξιοποίηση των περιεχόμενων πληροφοριών, υπό την μορφή εύρεσης και έκφρασης κατάλληλου μαθηματικού συσχετισμού (“correlation”). Εν συνεχεία και βάσει του αναπτυχθέντος ημιεμπειρικού μαθηματικού μοντέλου, έλαβε χώρα μετάβαση σε έμπειρο σύστημα υποστήριξης απόφασης (“expert system”), ικανό να ανταποκρίνεται στις ανάγκες της Κατασκευής (σε πραγματικό τόπο, χρόνο και κλίμακα).Στα Συμπεράσματα της παρούσας Διδακτορικής Διατριβής συμπεριλαμβάνεται η επιτυχής συνδυαστική αξιοποίηση μη-καταστρεπτικών τεχνικών Μικροσκοπίας Οπτικών Ινών και Ψηφιακής Επεξεργασίας Εικόνας ως προς την λήψη αντιπροσωπευτικών επιφανειακών εικόνων υφής/μικροδομής (“image patterns”) σε ορισμένες χρονικές στιγμές αμέσως μετά την έναρξη της σκυροδέτησης (αρχή,+ 5, +10, +15, +20, +25, +30, +40, +50, 60λεπτά). Οι ληφθείσες ψηφιακά επεξεργασμένες εικόνες μικροδομής συσχετίστηκαν (μέσω εκτεταμένου προγράμματος γραμμικών παλινδρομήσεων) με τις τελικές μηχανικές αντοχές των παραχθέντων σκυροδεμάτων και συμπεραίνεται η εντονότερη βαρύτητα/σχέση των μορφολογικών παραμέτρων του “κεντροειδούς” και του “αριθμού Euler” (καθόλες τις χρονικές στιγμές), σε μεγέθυνση 25x και όριο κατωφλίωσης/threshold 110. Πέραν αυτών, η αποτίμηση της μικροδομής από τα ληφθέντα image pattern ενσωματώνεται επιτυχώς σε εξειδικευμένη γνωσιολογική βάση δεδομένων και η Γνώση αυτή μετατρέπεται (μέσω τεχνητής νοημοσύνης και εφαρμογής γενετικών αλγορίθμων σε περιβάλλον MatLab®) σε έμπειρο σύστημα (“expert system”) υποβοήθησης/υποστήριξης αποφάσεων (“decision support system”) Αειφορίας στην Κατασκευή.
περισσότερα
Περίληψη σε άλλη γλώσσα
This Doctoral Thesis presents the investigation of the possibilities for the contribution of Non-Destructive methods of Testing in the diagnosis and quality control of building materials with emphasis on Sustainable Construction. Towards this goal, an extensive study was conducted concerning thee building materials examined (concrete samples of five different compositions, each consisting of a different cement constituent, by type and strength category) via both traditional/mainstay (destructive) methods of analysis/testing as well via innovative non-destructive methods of characterization.The holistic method that was developed during the course and framework of this present doctoral research consists and revolves around the combination and synergistic application of the non-destructive techniques of Fiber Optic Microscopy (FOM) and Digital Image Processing (DIP). More specifically, concrete samples were prepared and cured while under study via a suitable observation window which was f ...
This Doctoral Thesis presents the investigation of the possibilities for the contribution of Non-Destructive methods of Testing in the diagnosis and quality control of building materials with emphasis on Sustainable Construction. Towards this goal, an extensive study was conducted concerning thee building materials examined (concrete samples of five different compositions, each consisting of a different cement constituent, by type and strength category) via both traditional/mainstay (destructive) methods of analysis/testing as well via innovative non-destructive methods of characterization.The holistic method that was developed during the course and framework of this present doctoral research consists and revolves around the combination and synergistic application of the non-destructive techniques of Fiber Optic Microscopy (FOM) and Digital Image Processing (DIP). More specifically, concrete samples were prepared and cured while under study via a suitable observation window which was fitted in the concrete framework; through this window, fiber optic microscopy images were taken in due time increments –in real time– during the initial pouring and setting. Following this stage, these images (“image patterns”) were treated via Digital Image Processing; a suitable tuned algorithm was developed (which was compiled and fine-tuned specifically for the needs of this niche Research and application) in the MatLab® computational environment. Quantitative results were gathered from the information within the images themselves; these characterized the specific image at the corresponding time instances.These experimental results were utilized as real-time automated input and feeded into a specifically designed database & knowledge-based system via which further processing and utilization of the information stored within led to a suitable mathematical correlation model. Furthermore, this semi-empiric mathematical model led to the development of a decision support system (“expert system”) capable to withstand the needs of the construction field (real time, space and scale).The conclusions of the Doctorate Research include both the successfully combination and utilization of non-destructive techniques (Fiber Optic Microscopy and Digital Image Processing) towards the capture of representative surface image patterns at specified time intervals immediately after the start of the concrete placing (start,+ 5, +10, +15, +20, +25, +30, +40, +50, 60minutes). The finalized digitally processed image patters were correlated (via an extensive programme of liner regression study) to the final mechanical strength of the produced concrete samples; the greater impact/relationship of the morphological properties of the “centroid” and the “Euler number” (throughout the time intervals) at a magnification 25x and threshold value of 110 was identified. Besides this, the assessment of the concrete microstructure as per the digital processing of the collected image patters was incorporated successfully in a suitable specialized Knowledge database and this Knowledge was converted (through Artificial Intelligence and more specifically the application of genetic algorithms in a MatLab® environment) to an Expert System designed for Decision Support concerning Sustainability in the Construction Sector.
περισσότερα