Καινοτόμες τεχνικές επιστήμης δεδομένων για χρονοσειρές υψηλών διαστάσεων
Περίληψη
Η ανάλυση δεδομένων χρονοσειρών υψηλών διαστάσεων παρουσιάζει μοναδικές προκλήσεις λόγω της πολυπλοκότητας και του όγκου των σχετικών δεδομένων. Οι παραδοσιακές μέθοδοι χρονοσειρών συχνά υπολείπονται όταν εφαρμόζονται σε χρονοσειρές υψηλών διαστάσεων, καθιστώντας αναγκαία την ανάπτυξη νέων μεθοδολογιών. Αυτή η μελέτη διερευνά διάφορες προσεγγίσεις για την αντιμετώπιση αυτών των προκλήσεων, εστιάζοντας στην εκτίμηση και εξαγωγή χρονοσειρών υψηλών διαστάσεων με Συναρτησιακά Δεδομένα. Οι βασικές συνεισφορές περιλαμβάνουν τη χρήση αλγορίθμου SVD και την παρουσίαση αποτελεσμάτων Συναρτησιακής Ανάλυσης Δεδομένων για δεδομένα εξαρτώμενα από υψηλές διαστάσεις. Επιπλέον, η μελέτη ερευνά την ενσωμάτωση τεχνικών Συναρτησιακής Ανάλυσης Δεδομένων για την ενίσχυση της ακρίβειας πρόβλεψης και της επιλογής μοντέλων σε περιβάλλοντα υψηλών διαστάσεων. Μέσω μιας ολοκληρωμένης ανασκόπησης των πρόσφατων εξελίξεων και πρακτικών εφαρμογών, η μελέτη αυτή στοχεύει στην παροχή ενός ισχυρού πλαισίου για την αποτ ...
περισσότερα
Περίληψη σε άλλη γλώσσα
The analysis of high-dimensional time series data presents unique challenges due to the complexity and volume of the data involved. Traditional time series methods often fall short when applied to high-dimensional settings, necessitating the development of new methodologies. This study explores various approaches to address these challenges, focusing on the estimation and inference of high-dimensional time series with Functional Data. Key contributions include the use of SVD algorithm and the presentation of Functional Data Analysis results for high-dimensional dependent data. Additionally, the study discusses the integration of Functional Data Analysis techniques to enhance forecasting accuracy and model selection in high-dimensional contexts. Through a comprehensive review of recent developments and practical applications, this study aims to provide a robust framework for effectively managing and analyzing high-dimensional time series data.
![]() | Η διατριβή αυτή δεν είναι ακόμα διαθέσιμη ηλεκτρονικά |
|
Στατιστικά χρήσης

ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.

ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.