Περίληψη
Τα μεσογειακά δάση χαρακτηρίζονται από υψηλή χωροχρονική ετερογένεια και αποτελούν ένα από σημαντικότερα σημεία της βιοποικιλότητας στον πλανήτη. Η σημαντική αξία τους και το ευρύ φάσμα των οικοσυστημικών υπηρεσιών που παρέχουν, αναγνωρίζεται ευρέως από επιστήμονες, διεθνείς συμβάσεις και οργανισμούς. Ωστόσο, η ευπάθεια τους σε ανθρώπινες και φυσικές απειλές έχει ως αποτέλεσμα την διατάραξη τους. Συνεπώς, σχέδια βιώσιμης διαχείρισης και αειφορικής ανάπτυξης καθίστανται ως επιτακτική ανάγκη. Οι πρακτικές παρακολούθησης και απογραφής δασών απαιτούν την αξιόπιστη εκτίμηση δασικών παραμέτρων, όπως η κυκλική επιφάνεια, ο αριθμός δέντρων ανά μονάδα επιφάνειας και ξυλώδες όγκου. Η ετερογένεια των μεσογειακών δασών και η δύσκολη πρόσβασής τους, καθιστά την επιστήμη της τηλεπισκόπησης ως εξαιρετικά χρήσιμο μέσο για την αξιολόγηση των δασικών πόρων. Η τεχνολογία της τηλεπισκόπησης και τα ανοιχτά δεδομένα τηλεπισκόπησης παρέχουν μεγάλες δυνατότητες στον τομέα της δασολογίας και στην δασική απογρα ...
Τα μεσογειακά δάση χαρακτηρίζονται από υψηλή χωροχρονική ετερογένεια και αποτελούν ένα από σημαντικότερα σημεία της βιοποικιλότητας στον πλανήτη. Η σημαντική αξία τους και το ευρύ φάσμα των οικοσυστημικών υπηρεσιών που παρέχουν, αναγνωρίζεται ευρέως από επιστήμονες, διεθνείς συμβάσεις και οργανισμούς. Ωστόσο, η ευπάθεια τους σε ανθρώπινες και φυσικές απειλές έχει ως αποτέλεσμα την διατάραξη τους. Συνεπώς, σχέδια βιώσιμης διαχείρισης και αειφορικής ανάπτυξης καθίστανται ως επιτακτική ανάγκη. Οι πρακτικές παρακολούθησης και απογραφής δασών απαιτούν την αξιόπιστη εκτίμηση δασικών παραμέτρων, όπως η κυκλική επιφάνεια, ο αριθμός δέντρων ανά μονάδα επιφάνειας και ξυλώδες όγκου. Η ετερογένεια των μεσογειακών δασών και η δύσκολη πρόσβασής τους, καθιστά την επιστήμη της τηλεπισκόπησης ως εξαιρετικά χρήσιμο μέσο για την αξιολόγηση των δασικών πόρων. Η τεχνολογία της τηλεπισκόπησης και τα ανοιχτά δεδομένα τηλεπισκόπησης παρέχουν μεγάλες δυνατότητες στον τομέα της δασολογίας και στην δασική απογραφή. Επιπλέον, η ταχεία πρόοδος στους αλγόριθμους τεχνητής νοημοσύνης διευκολύνει την ανάλυση ευρέος φάσματος δεδομένων. Σε αυτό το πλαίσιο, ο συνδυασμός αυτών των ισχυρών εργαλείων (δεδομένα τηλεπισκόπησης και προσεγγίσεις μηχανικής μάθησης) συνιστά μια πολλά υποσχόμενη, αλλά και ερευνητική πρόκληση, για την εκτίμηση δασικών παραμέτρων. Στη παρούσα διατριβή, εξετάζονται διάφορες προσεγγίσεις για την βελτιστοποίηση της εκτίμησης δασικών παραμέτρων με την χρήση δορυφορικών εικόνων και τεχνικών μηχανικής μάθησης.Η δομή της παρούσας διατριβής αποτελείται από τρία μέρη. Το πρώτο μέρος αποτελείται από τέσσερα κεφάλαια. Αρχικά, στο Κεφάλαιο 1, γίνεται μια εισαγωγή στην αξία των μεσογειακών δασών, στις υπηρεσίες που παρέχουν και στις απειλές που αντιμετωπίζουν. Το Κεφάλαιο 2 τονίζει την ανάγκη αειφορικής διαχείρισης των δασών και κατ 'επέκταση της απογραφής και αξιόπιστης εκτίμησης δασικών παραμέτρων. Στο Κεφάλαιο 3, παρουσιάζονται εν συντομία πηγές δεδομένων τηλεπισκόπησης και η συμβολή τους σε δασικές εφαρμογές και ιδιαίτερα στην εκτίμηση δασικών παραμέτρων, σε περιοχές της Μεσογείου. Το κεφάλαιο 4, αποτελεί μια εισαγωγή στους αλγόριθμους τεχνητής νοημοσύνης και μηχανικής μάθησης και πώς αυτές οι προσεγγίσεις εφαρμόζονται στον τομέα της τηλεπισκόπησης και της δασολογίας. Τέλος παρουσιάζονται τα ερευνητικά ερωτήματα και τα αντικείμενα της παρούσας διατριβής. Το δεύτερο μέρος αποτελείται από τέσσερα άρθρα, εκ των οποίων, το πρώτο (Κεφάλαιο 7) έχει δημοσιευτεί στο περιοδικό Remote Sensing of Environment (2017) και αφορά την εκτίμηση δασικών παραμέτρων χρησιμοποιώντας δια-εποχιακές εικόνες Landsat 8 Operational Land Imager. Το δεύτερο άρθρο (Κεφάλαιο 8) έχει δημοσιευτεί στο Remote Sensing Letters (2017) και αφορά τις σχέσεις μεταξύ ξυλώδες όγκου και εικόνων Sentinel-2 Multi Spectral Instrument. Το τρίτο άρθρο (Κεφάλαιο 9) έχει δημοσιευτεί στο περιοδικό International Journal of Applied Earth Observation and Geoinformation (2019) και αφορά την αξιολόγηση των δορυφορικών δεδομένων Sentinel-2 Multi Spectral Instrument για την εκτίμηση του ξυλώδες όγκου. Το τελευταίο άρθρο (Κεφάλαιο 10) που προορίζεται προς δημοσίευση, αποτελεί μια προκαταρκτική μελέτη για την εκτίμηση του ξυλώδες όγκου σε ένα μεσογειακό δασικό οικοσύστημα, με μία μετά-μαθησιακή προσέγγιση και την ανάπτυξη ενός μοντέλου συσσωρευμένης γενίκευσης (stacked generalization). Τέλος, στο τρίτο μέρος της παρούσας διατριβής παρουσιάζονται συνοπτικά οι απαντήσεις των ερωτημάτων που τέθηκαν στην παρούσα διατριβή και τα προβλήματα - περιορισμοί που αντιμετωπίστηκαν. Επίσης, προτείνονται δυνατότητες και προοπτικές εξέλιξης της παρούσας έρευνας, που θα μπορούσε να αποτελέσουν αντικείμενο για μελλοντική έρευνα.
περισσότερα
Περίληψη σε άλλη γλώσσα
Mediterranean forests are characterized by high spatiotemporal heterogeneity and constitute one of the Earth’s biodiversity hotspots. The ecosystem services they provide are of great significant value and widely recognized by scientists and government institutions. However, Mediterranean forests are still being degraded due to their vulnerability to human and natural threats. Therefore, sustainable management plans have become an immediate necessity. Mediterranean countries are engaged in national forest inventories and monitoring practices, which require the retrieval of accurate forest attribute information such as tree density, basal area and grown stock volume. Due to Mediterranean forest’s heterogeneity and limited site accessibility over remote regions, earth observation data has been extremely supportive to assess forest resources. Remote sensing technology and the open access to remote sensing data provide great potential in the field of forestry and forest inventories. Moreove ...
Mediterranean forests are characterized by high spatiotemporal heterogeneity and constitute one of the Earth’s biodiversity hotspots. The ecosystem services they provide are of great significant value and widely recognized by scientists and government institutions. However, Mediterranean forests are still being degraded due to their vulnerability to human and natural threats. Therefore, sustainable management plans have become an immediate necessity. Mediterranean countries are engaged in national forest inventories and monitoring practices, which require the retrieval of accurate forest attribute information such as tree density, basal area and grown stock volume. Due to Mediterranean forest’s heterogeneity and limited site accessibility over remote regions, earth observation data has been extremely supportive to assess forest resources. Remote sensing technology and the open access to remote sensing data provide great potential in the field of forestry and forest inventories. Moreover, the rapid progress in artificial intelligence algorithms facilitates the analysis of wide range of data. In this context, the combination of these powerful tools (remote sensing data and machine learning approaches) for the assessment of forest parameters constitutes a promising, yet challenging procedure. The present thesis examines various aspects for enhanced estimation of forest parameters, using remote sensing images and machine learning techniques. The thesis is divided into three main parts. The theoretical first part consists of four chapters. Firstly, Chapter 1 introduces the importance of Mediterranean forests, and the threats they confront (Chapter 1). Chapter 2 emphasizes the need of sustainable forest management plans and by extension forest inventory and accurate forest parameter estimation. Chapter 3 briefly presents remote sensing resources and how studies used remote sensing data to forest applications and particularly to forest parameter estimation, in Mediterranean areas. The chapter 4 is an introduction to machine learning techniques and how these approaches are applied on remote sensing and forestry field. Finally, the research questions and the objectives of the present thesis are presented.Part 2 consists of four studies, the first study (Chapter 7) is published in Remote Sensing of Environment (2017) and concerns Mediterranean forest parameters estimation using multi seasonal Landsat 8 OLI imagery and Random Forest algorithm. The second study (Chapter 8) is published in Remote Sensing Letters (2017) and concerns the relationship between growing stock volume and Sentinel-2 OLI imagery. The third study (Chapter 9) is published in International Journal of Applied Earth Observation and Geoinformation (2019) and concerns the evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 OLI imagery to assess growing stock volume. The fourth study (Chapter 10) is intended to be submitted for publication and consists an initial approach on meta-learning and stacked generalizations modeling for estimating grown stock volume, in Mediterranean ecosystem. Finally, Part 3 present a summary of how this thesis addresses its objectives, what were its main limitations and how this work could be enhanced with future research.
περισσότερα